Properties

Label 4-566048-1.1-c1e2-0-0
Degree $4$
Conductor $566048$
Sign $-1$
Analytic cond. $36.0917$
Root an. cond. $2.45104$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4·3-s + 4-s + 4·6-s − 8-s + 6·9-s − 4·12-s + 16-s + 12·17-s − 6·18-s + 2·19-s + 4·24-s − 10·25-s + 4·27-s − 8·31-s − 32-s − 12·34-s + 6·36-s − 2·38-s − 4·48-s + 49-s + 10·50-s − 48·51-s − 4·54-s − 8·57-s − 12·59-s + 16·61-s + ⋯
L(s)  = 1  − 0.707·2-s − 2.30·3-s + 1/2·4-s + 1.63·6-s − 0.353·8-s + 2·9-s − 1.15·12-s + 1/4·16-s + 2.91·17-s − 1.41·18-s + 0.458·19-s + 0.816·24-s − 2·25-s + 0.769·27-s − 1.43·31-s − 0.176·32-s − 2.05·34-s + 36-s − 0.324·38-s − 0.577·48-s + 1/7·49-s + 1.41·50-s − 6.72·51-s − 0.544·54-s − 1.05·57-s − 1.56·59-s + 2.04·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 566048 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 566048 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(566048\)    =    \(2^{5} \cdot 7^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(36.0917\)
Root analytic conductor: \(2.45104\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 566048,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
19$C_2$ \( 1 - 2 T + p T^{2} \)
good3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.081070482945495560550014170392, −7.57571100088867902110310233811, −7.47409117202170347395035873500, −6.75439540759619740939389014884, −6.21485262589367409754991816651, −5.86507697049146782198264869749, −5.57928681742950427486583645839, −5.23719852670262600297208829240, −4.77780388213807797595021740659, −3.72379689627192733903633245428, −3.49672951871907610112656515855, −2.56658671720506586948973480294, −1.53114392297898773356855355003, −0.905061494360852486185250338719, 0, 0.905061494360852486185250338719, 1.53114392297898773356855355003, 2.56658671720506586948973480294, 3.49672951871907610112656515855, 3.72379689627192733903633245428, 4.77780388213807797595021740659, 5.23719852670262600297208829240, 5.57928681742950427486583645839, 5.86507697049146782198264869749, 6.21485262589367409754991816651, 6.75439540759619740939389014884, 7.47409117202170347395035873500, 7.57571100088867902110310233811, 8.081070482945495560550014170392

Graph of the $Z$-function along the critical line