Properties

Label 4-351232-1.1-c1e2-0-11
Degree $4$
Conductor $351232$
Sign $1$
Analytic cond. $22.3948$
Root an. cond. $2.17538$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 7-s − 6·9-s + 8·11-s + 4·13-s + 2·25-s − 16·31-s + 4·35-s + 8·43-s − 24·45-s + 16·47-s + 49-s + 32·55-s − 12·61-s − 6·63-s + 16·65-s + 8·67-s + 8·77-s + 27·81-s + 4·91-s − 48·99-s + 4·101-s + 32·103-s + 24·107-s + 4·113-s − 24·117-s + 26·121-s + ⋯
L(s)  = 1  + 1.78·5-s + 0.377·7-s − 2·9-s + 2.41·11-s + 1.10·13-s + 2/5·25-s − 2.87·31-s + 0.676·35-s + 1.21·43-s − 3.57·45-s + 2.33·47-s + 1/7·49-s + 4.31·55-s − 1.53·61-s − 0.755·63-s + 1.98·65-s + 0.977·67-s + 0.911·77-s + 3·81-s + 0.419·91-s − 4.82·99-s + 0.398·101-s + 3.15·103-s + 2.32·107-s + 0.376·113-s − 2.21·117-s + 2.36·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 351232 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351232 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(351232\)    =    \(2^{10} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(22.3948\)
Root analytic conductor: \(2.17538\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 351232,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.818316330\)
\(L(\frac12)\) \(\approx\) \(2.818316330\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.065821423802092395362181435296, −8.560607806232820418165457845354, −7.81893808816424475924755874673, −7.31356679414241138388846467495, −6.67949194679031572918581545842, −6.08808818165492598018676693090, −5.82613210142107824134972732669, −5.81038841174965326632002876390, −5.10093822894527537496894350174, −4.18465932715971087267449515138, −3.70152283742019411667382089257, −3.22234166202046004358507312699, −2.14556791802447766709825303506, −1.93975903006317803281774950018, −1.01536704926852438245703233735, 1.01536704926852438245703233735, 1.93975903006317803281774950018, 2.14556791802447766709825303506, 3.22234166202046004358507312699, 3.70152283742019411667382089257, 4.18465932715971087267449515138, 5.10093822894527537496894350174, 5.81038841174965326632002876390, 5.82613210142107824134972732669, 6.08808818165492598018676693090, 6.67949194679031572918581545842, 7.31356679414241138388846467495, 7.81893808816424475924755874673, 8.560607806232820418165457845354, 9.065821423802092395362181435296

Graph of the $Z$-function along the critical line