Properties

Label 4-371e2-1.1-c1e2-0-6
Degree $4$
Conductor $137641$
Sign $-1$
Analytic cond. $8.77610$
Root an. cond. $1.72117$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 9-s − 4·11-s + 2·13-s − 3·16-s − 2·17-s − 2·25-s − 6·29-s − 36-s − 6·37-s − 8·43-s − 4·44-s − 4·47-s + 49-s + 2·52-s + 6·53-s − 8·59-s − 7·64-s − 2·68-s − 8·81-s + 4·89-s + 6·97-s + 4·99-s − 2·100-s + 20·107-s − 10·113-s − 6·116-s + ⋯
L(s)  = 1  + 1/2·4-s − 1/3·9-s − 1.20·11-s + 0.554·13-s − 3/4·16-s − 0.485·17-s − 2/5·25-s − 1.11·29-s − 1/6·36-s − 0.986·37-s − 1.21·43-s − 0.603·44-s − 0.583·47-s + 1/7·49-s + 0.277·52-s + 0.824·53-s − 1.04·59-s − 7/8·64-s − 0.242·68-s − 8/9·81-s + 0.423·89-s + 0.609·97-s + 0.402·99-s − 1/5·100-s + 1.93·107-s − 0.940·113-s − 0.557·116-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 137641 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 137641 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(137641\)    =    \(7^{2} \cdot 53^{2}\)
Sign: $-1$
Analytic conductor: \(8.77610\)
Root analytic conductor: \(1.72117\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 137641,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
53$C_2$ \( 1 - 6 T + p T^{2} \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
3$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 33 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 13 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 85 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 114 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 13 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 87 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.965189545668973371850831140050, −8.675697572992931760415878019149, −8.133644721434451692190571994972, −7.60013928785060028593997498047, −7.18729262571201574330029560168, −6.62224367875363672581460941647, −6.13324145080416111769745910300, −5.55899470277431583414593672632, −5.07051024096508536713220740245, −4.47130801306741884223475447311, −3.68520704670013565965267999575, −3.08688213013088840571554219942, −2.34036015708209897566945451388, −1.72070972811502253177948294750, 0, 1.72070972811502253177948294750, 2.34036015708209897566945451388, 3.08688213013088840571554219942, 3.68520704670013565965267999575, 4.47130801306741884223475447311, 5.07051024096508536713220740245, 5.55899470277431583414593672632, 6.13324145080416111769745910300, 6.62224367875363672581460941647, 7.18729262571201574330029560168, 7.60013928785060028593997498047, 8.133644721434451692190571994972, 8.675697572992931760415878019149, 8.965189545668973371850831140050

Graph of the $Z$-function along the critical line