Properties

Label 4-583e2-1.1-c1e2-0-1
Degree $4$
Conductor $339889$
Sign $1$
Analytic cond. $21.6716$
Root an. cond. $2.15760$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 5·9-s + 2·11-s + 8·13-s − 4·16-s − 4·17-s − 9·25-s + 6·37-s − 12·43-s + 16·47-s − 2·49-s − 6·53-s + 10·59-s + 20·63-s − 8·77-s + 16·81-s + 30·89-s − 32·91-s − 14·97-s − 10·99-s + 36·107-s + 16·112-s + 18·113-s − 40·117-s + 16·119-s + 3·121-s + 127-s + ⋯
L(s)  = 1  − 1.51·7-s − 5/3·9-s + 0.603·11-s + 2.21·13-s − 16-s − 0.970·17-s − 9/5·25-s + 0.986·37-s − 1.82·43-s + 2.33·47-s − 2/7·49-s − 0.824·53-s + 1.30·59-s + 2.51·63-s − 0.911·77-s + 16/9·81-s + 3.17·89-s − 3.35·91-s − 1.42·97-s − 1.00·99-s + 3.48·107-s + 1.51·112-s + 1.69·113-s − 3.69·117-s + 1.46·119-s + 3/11·121-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 339889 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 339889 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(339889\)    =    \(11^{2} \cdot 53^{2}\)
Sign: $1$
Analytic conductor: \(21.6716\)
Root analytic conductor: \(2.15760\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 339889,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8850922761\)
\(L(\frac12)\) \(\approx\) \(0.8850922761\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad11$C_1$ \( ( 1 - T )^{2} \)
53$C_2$ \( 1 + 6 T + p T^{2} \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.695157772416545494546569220747, −8.603539619290756001226038948684, −7.897483464878131921600241104256, −7.36095752078983936132318716180, −6.49737245338834450626105272813, −6.36261389471308870138602900888, −6.15894340608527249737055637518, −5.63591512751798630708769003164, −4.91419721756313978845072424427, −4.08847387815843813369306541952, −3.68381000464579683591996966028, −3.29168899169749781933616191290, −2.56273686004108922271717946472, −1.86954239377160649257505077121, −0.51542943980575115852272959956, 0.51542943980575115852272959956, 1.86954239377160649257505077121, 2.56273686004108922271717946472, 3.29168899169749781933616191290, 3.68381000464579683591996966028, 4.08847387815843813369306541952, 4.91419721756313978845072424427, 5.63591512751798630708769003164, 6.15894340608527249737055637518, 6.36261389471308870138602900888, 6.49737245338834450626105272813, 7.36095752078983936132318716180, 7.897483464878131921600241104256, 8.603539619290756001226038948684, 8.695157772416545494546569220747

Graph of the $Z$-function along the critical line