Properties

Label 4-20e3-1.1-c1e2-0-0
Degree $4$
Conductor $8000$
Sign $1$
Analytic cond. $0.510086$
Root an. cond. $0.845105$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 6·9-s + 8·11-s + 8·19-s + 25-s − 4·29-s − 16·31-s − 12·41-s − 6·45-s + 2·49-s + 8·55-s − 8·59-s − 4·61-s + 27·81-s − 12·89-s + 8·95-s − 48·99-s + 12·101-s + 28·109-s + 26·121-s + 125-s + 127-s + 131-s + 137-s + 139-s − 4·145-s + 149-s + ⋯
L(s)  = 1  + 0.447·5-s − 2·9-s + 2.41·11-s + 1.83·19-s + 1/5·25-s − 0.742·29-s − 2.87·31-s − 1.87·41-s − 0.894·45-s + 2/7·49-s + 1.07·55-s − 1.04·59-s − 0.512·61-s + 3·81-s − 1.27·89-s + 0.820·95-s − 4.82·99-s + 1.19·101-s + 2.68·109-s + 2.36·121-s + 0.0894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.332·145-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(8000\)    =    \(2^{6} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(0.510086\)
Root analytic conductor: \(0.845105\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 8000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9854263883\)
\(L(\frac12)\) \(\approx\) \(0.9854263883\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.52426214006865205005559601963, −11.45666669128344280655084086532, −10.83635878381861701657899519690, −9.851840183892789826086741161768, −9.267253735733507250496452791400, −9.022035638415746178025932660186, −8.516348691113562212594470236153, −7.50932176073420730404294525891, −6.97238544391138654785050907556, −6.11165748014924370206663675456, −5.70093888866808737514223874840, −5.01978566915858300867155671122, −3.66795927025167344126272800405, −3.26180587408034592610487247010, −1.73185811467864323225134521099, 1.73185811467864323225134521099, 3.26180587408034592610487247010, 3.66795927025167344126272800405, 5.01978566915858300867155671122, 5.70093888866808737514223874840, 6.11165748014924370206663675456, 6.97238544391138654785050907556, 7.50932176073420730404294525891, 8.516348691113562212594470236153, 9.022035638415746178025932660186, 9.267253735733507250496452791400, 9.851840183892789826086741161768, 10.83635878381861701657899519690, 11.45666669128344280655084086532, 11.52426214006865205005559601963

Graph of the $Z$-function along the critical line