Properties

Label 4-270e2-1.1-c1e2-0-4
Degree $4$
Conductor $72900$
Sign $1$
Analytic cond. $4.64816$
Root an. cond. $1.46831$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 3·5-s + 6·11-s + 16-s + 4·19-s − 3·20-s + 4·25-s − 12·29-s + 10·31-s + 12·41-s + 6·44-s − 13·49-s − 18·55-s − 24·59-s + 16·61-s + 64-s + 4·76-s + 16·79-s − 3·80-s + 36·89-s − 12·95-s + 4·100-s + 6·101-s + 4·109-s − 12·116-s + 5·121-s + 10·124-s + ⋯
L(s)  = 1  + 1/2·4-s − 1.34·5-s + 1.80·11-s + 1/4·16-s + 0.917·19-s − 0.670·20-s + 4/5·25-s − 2.22·29-s + 1.79·31-s + 1.87·41-s + 0.904·44-s − 1.85·49-s − 2.42·55-s − 3.12·59-s + 2.04·61-s + 1/8·64-s + 0.458·76-s + 1.80·79-s − 0.335·80-s + 3.81·89-s − 1.23·95-s + 2/5·100-s + 0.597·101-s + 0.383·109-s − 1.11·116-s + 5/11·121-s + 0.898·124-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(72900\)    =    \(2^{2} \cdot 3^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(4.64816\)
Root analytic conductor: \(1.46831\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 72900,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.424789353\)
\(L(\frac12)\) \(\approx\) \(1.424789353\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3 \( 1 \)
5$C_2$ \( 1 + 3 T + p T^{2} \)
good7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.512741326522107701681952133776, −9.424555904372419494656746065633, −8.904247934298067766833725269707, −8.033154449173421852738549606568, −7.82723843094092867969941089213, −7.36566276940036406451155206076, −6.71508725988629390136097161445, −6.29951651895743522476705768290, −5.74395141102766134561119794703, −4.77709333112371596512170551343, −4.34568268458938072273214663423, −3.49841666048700785356624668043, −3.38549178369413487864105189864, −2.10144548480492536578842252757, −1.01053650029556092883839412457, 1.01053650029556092883839412457, 2.10144548480492536578842252757, 3.38549178369413487864105189864, 3.49841666048700785356624668043, 4.34568268458938072273214663423, 4.77709333112371596512170551343, 5.74395141102766134561119794703, 6.29951651895743522476705768290, 6.71508725988629390136097161445, 7.36566276940036406451155206076, 7.82723843094092867969941089213, 8.033154449173421852738549606568, 8.904247934298067766833725269707, 9.424555904372419494656746065633, 9.512741326522107701681952133776

Graph of the $Z$-function along the critical line