Properties

Label 4-265e2-1.1-c1e2-0-4
Degree $4$
Conductor $70225$
Sign $-1$
Analytic cond. $4.47760$
Root an. cond. $1.45465$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s + 3·9-s + 5·16-s − 10·19-s − 5·25-s − 14·29-s + 8·31-s − 9·36-s + 12·41-s + 2·49-s − 4·59-s − 16·61-s − 3·64-s + 2·71-s + 30·76-s − 2·79-s − 28·89-s + 15·100-s − 4·101-s + 32·109-s + 42·116-s − 22·121-s − 24·124-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 3/2·4-s + 9-s + 5/4·16-s − 2.29·19-s − 25-s − 2.59·29-s + 1.43·31-s − 3/2·36-s + 1.87·41-s + 2/7·49-s − 0.520·59-s − 2.04·61-s − 3/8·64-s + 0.237·71-s + 3.44·76-s − 0.225·79-s − 2.96·89-s + 3/2·100-s − 0.398·101-s + 3.06·109-s + 3.89·116-s − 2·121-s − 2.15·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 70225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(70225\)    =    \(5^{2} \cdot 53^{2}\)
Sign: $-1$
Analytic conductor: \(4.47760\)
Root analytic conductor: \(1.45465\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 70225,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2$ \( 1 + p T^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
3$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
89$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.368434051092139293667530691345, −9.264238826193943461669666199356, −8.637582098741098828567028517753, −8.166673073130889036064226586062, −7.58868145971317679966045525982, −7.20736947999270954805514319970, −6.18933898799275030960445851154, −6.04347889941024738587947019148, −5.17650250749336361526468916904, −4.50862835068296220400083952922, −4.11243849897383015215651683874, −3.81730422950962634095021138075, −2.54734060183809652565882169046, −1.57201196455560280184855777542, 0, 1.57201196455560280184855777542, 2.54734060183809652565882169046, 3.81730422950962634095021138075, 4.11243849897383015215651683874, 4.50862835068296220400083952922, 5.17650250749336361526468916904, 6.04347889941024738587947019148, 6.18933898799275030960445851154, 7.20736947999270954805514319970, 7.58868145971317679966045525982, 8.166673073130889036064226586062, 8.637582098741098828567028517753, 9.264238826193943461669666199356, 9.368434051092139293667530691345

Graph of the $Z$-function along the critical line