Properties

Label 4-220e2-1.1-c1e2-0-1
Degree $4$
Conductor $48400$
Sign $1$
Analytic cond. $3.08602$
Root an. cond. $1.32540$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 5·9-s − 2·11-s + 16·19-s + 4·25-s + 10·31-s + 15·45-s − 10·49-s + 6·55-s + 6·59-s − 8·61-s + 30·71-s + 4·79-s + 16·81-s − 18·89-s − 48·95-s + 10·99-s + 36·101-s + 4·109-s + 3·121-s + 3·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1.34·5-s − 5/3·9-s − 0.603·11-s + 3.67·19-s + 4/5·25-s + 1.79·31-s + 2.23·45-s − 1.42·49-s + 0.809·55-s + 0.781·59-s − 1.02·61-s + 3.56·71-s + 0.450·79-s + 16/9·81-s − 1.90·89-s − 4.92·95-s + 1.00·99-s + 3.58·101-s + 0.383·109-s + 3/11·121-s + 0.268·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(48400\)    =    \(2^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(3.08602\)
Root analytic conductor: \(1.32540\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 48400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8686529049\)
\(L(\frac12)\) \(\approx\) \(0.8686529049\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + 3 T + p T^{2} \)
11$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
71$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.828597367466048724363215268486, −9.813753565180213813561671136388, −9.062308306545389100350755701537, −8.323465712127201941198713831607, −8.132665807481574488057539990847, −7.60852684015633966980596452192, −7.19880969537039357464113305235, −6.37561722404072890002203233082, −5.71468598548784473589814335416, −5.11227132195889762323685903220, −4.78230154364361768976603326542, −3.54794291769774557092878092602, −3.27381985666804460223319703873, −2.62441060321725601358270028596, −0.809727221508988329410874951537, 0.809727221508988329410874951537, 2.62441060321725601358270028596, 3.27381985666804460223319703873, 3.54794291769774557092878092602, 4.78230154364361768976603326542, 5.11227132195889762323685903220, 5.71468598548784473589814335416, 6.37561722404072890002203233082, 7.19880969537039357464113305235, 7.60852684015633966980596452192, 8.132665807481574488057539990847, 8.323465712127201941198713831607, 9.062308306545389100350755701537, 9.813753565180213813561671136388, 9.828597367466048724363215268486

Graph of the $Z$-function along the critical line