Properties

Label 4-440e2-1.1-c1e2-0-12
Degree $4$
Conductor $193600$
Sign $-1$
Analytic cond. $12.3441$
Root an. cond. $1.87441$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2·3-s + 2·4-s + 5-s + 4·6-s − 3·9-s − 2·10-s − 4·12-s + 8·13-s − 2·15-s − 4·16-s + 6·18-s + 2·20-s − 4·25-s − 16·26-s + 14·27-s + 4·30-s + 14·31-s + 8·32-s − 6·36-s + 6·37-s − 16·39-s − 16·41-s − 12·43-s − 3·45-s + 8·48-s − 10·49-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.15·3-s + 4-s + 0.447·5-s + 1.63·6-s − 9-s − 0.632·10-s − 1.15·12-s + 2.21·13-s − 0.516·15-s − 16-s + 1.41·18-s + 0.447·20-s − 4/5·25-s − 3.13·26-s + 2.69·27-s + 0.730·30-s + 2.51·31-s + 1.41·32-s − 36-s + 0.986·37-s − 2.56·39-s − 2.49·41-s − 1.82·43-s − 0.447·45-s + 1.15·48-s − 1.42·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(193600\)    =    \(2^{6} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(12.3441\)
Root analytic conductor: \(1.87441\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 193600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
5$C_2$ \( 1 - T + p T^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.615368948155826307952486308246, −8.603539619290756001226038948684, −8.168094638565977111025666477553, −7.67961078759111624265472503121, −6.71835585937068472809547273693, −6.36261389471308870138602900888, −6.16982430614728959932450070274, −5.70487824961827828764647644739, −4.82892009975420457193015711650, −4.60848682112829325490586806192, −3.37375563370605936780674564268, −2.99655198047806765916299649806, −1.80573857298709820434769765633, −1.12915794459905362466023426246, 0, 1.12915794459905362466023426246, 1.80573857298709820434769765633, 2.99655198047806765916299649806, 3.37375563370605936780674564268, 4.60848682112829325490586806192, 4.82892009975420457193015711650, 5.70487824961827828764647644739, 6.16982430614728959932450070274, 6.36261389471308870138602900888, 6.71835585937068472809547273693, 7.67961078759111624265472503121, 8.168094638565977111025666477553, 8.603539619290756001226038948684, 8.615368948155826307952486308246

Graph of the $Z$-function along the critical line