Properties

Degree 4
Conductor $ 2^{2} \cdot 3^{2} \cdot 7^{3} $
Sign $1$
Motivic weight 1
Primitive no
Self-dual yes
Analytic rank 0

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4-s + 7-s + 9-s − 2·12-s + 16-s + 12·17-s − 2·21-s − 10·25-s + 4·27-s + 28-s + 36-s + 4·37-s + 12·41-s + 16·43-s − 24·47-s − 2·48-s + 49-s − 24·51-s − 12·59-s + 63-s + 64-s − 8·67-s + 12·68-s + 20·75-s + 16·79-s − 11·81-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/2·4-s + 0.377·7-s + 1/3·9-s − 0.577·12-s + 1/4·16-s + 2.91·17-s − 0.436·21-s − 2·25-s + 0.769·27-s + 0.188·28-s + 1/6·36-s + 0.657·37-s + 1.87·41-s + 2.43·43-s − 3.50·47-s − 0.288·48-s + 1/7·49-s − 3.36·51-s − 1.56·59-s + 0.125·63-s + 1/8·64-s − 0.977·67-s + 1.45·68-s + 2.30·75-s + 1.80·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 12348 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 12348 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(12348\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{3}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{12348} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  no
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(4,\ 12348,\ (\ :1/2, 1/2),\ 1)$
$L(1)$  $\approx$  $0.8566614515$
$L(\frac12)$  $\approx$  $0.8566614515$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;7\}$, \[F_p(T) = 1 - a_p T + b_p T^2 - a_p p T^3 + p^2 T^4 \]with $b_p = a_p^2 - a_{p^2}$. If $p \in \{2,\;3,\;7\}$, then $F_p$ is a polynomial of degree at most 3.
$p$$\Gal(F_p)$$F_p$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
7$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−11.23136141438460806904855801814, −11.03381616069283788346556339454, −10.27339907123230780461643050534, −9.765547119459919407856461234632, −9.393998538973797562285424645673, −8.245010328271296459357780366393, −7.64010214491199898083268392854, −7.57571100088867902110310233811, −6.37349457460642388728354325328, −5.88407913223931048395780461484, −5.57928681742950427486583645839, −4.74683922157615295493069282209, −3.79391663707115759548696099652, −2.83833445427180997893704571146, −1.33827299261372059142982522511, 1.33827299261372059142982522511, 2.83833445427180997893704571146, 3.79391663707115759548696099652, 4.74683922157615295493069282209, 5.57928681742950427486583645839, 5.88407913223931048395780461484, 6.37349457460642388728354325328, 7.57571100088867902110310233811, 7.64010214491199898083268392854, 8.245010328271296459357780366393, 9.393998538973797562285424645673, 9.765547119459919407856461234632, 10.27339907123230780461643050534, 11.03381616069283788346556339454, 11.23136141438460806904855801814

Graph of the $Z$-function along the critical line