Properties

Label 4-966e2-1.1-c1e2-0-12
Degree $4$
Conductor $933156$
Sign $1$
Analytic cond. $59.4988$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 8·5-s − 4·7-s − 3·9-s + 16-s − 4·17-s + 8·20-s + 38·25-s − 4·28-s − 32·35-s − 3·36-s − 8·37-s + 12·41-s + 20·43-s − 24·45-s + 9·49-s + 24·59-s + 12·63-s + 64-s − 20·67-s − 4·68-s − 24·79-s + 8·80-s + 9·81-s + 28·83-s − 32·85-s − 12·89-s + ⋯
L(s)  = 1  + 1/2·4-s + 3.57·5-s − 1.51·7-s − 9-s + 1/4·16-s − 0.970·17-s + 1.78·20-s + 38/5·25-s − 0.755·28-s − 5.40·35-s − 1/2·36-s − 1.31·37-s + 1.87·41-s + 3.04·43-s − 3.57·45-s + 9/7·49-s + 3.12·59-s + 1.51·63-s + 1/8·64-s − 2.44·67-s − 0.485·68-s − 2.70·79-s + 0.894·80-s + 81-s + 3.07·83-s − 3.47·85-s − 1.27·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 933156 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 933156 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(933156\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(59.4988\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 933156,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.812652738\)
\(L(\frac12)\) \(\approx\) \(3.812652738\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_2$ \( 1 + p T^{2} \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.473086403046087731503510874073, −7.49124187490201587466733057696, −6.98429022098037702749121152389, −6.69441913641732873591204403077, −6.24150742451512185812061050942, −5.84432417959727908710252168629, −5.73491872900764331079666777759, −5.42556424957105177850208163634, −4.65189030601306649410353288456, −3.90796663115617095498900880052, −2.98279695187217995742043408916, −2.63232737474552247848840602025, −2.38914481848313294289968516969, −1.80751679365655142616830080476, −0.897690950153135088654928702405, 0.897690950153135088654928702405, 1.80751679365655142616830080476, 2.38914481848313294289968516969, 2.63232737474552247848840602025, 2.98279695187217995742043408916, 3.90796663115617095498900880052, 4.65189030601306649410353288456, 5.42556424957105177850208163634, 5.73491872900764331079666777759, 5.84432417959727908710252168629, 6.24150742451512185812061050942, 6.69441913641732873591204403077, 6.98429022098037702749121152389, 7.49124187490201587466733057696, 8.473086403046087731503510874073

Graph of the $Z$-function along the critical line