Properties

Label 4-408e2-1.1-c1e2-0-30
Degree $4$
Conductor $166464$
Sign $-1$
Analytic cond. $10.6138$
Root an. cond. $1.80496$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s − 9-s − 16-s − 2·17-s + 18-s + 8·19-s − 10·25-s − 5·32-s + 2·34-s + 36-s − 8·38-s − 8·43-s + 2·49-s + 10·50-s − 24·59-s + 7·64-s − 24·67-s + 2·68-s − 3·72-s − 8·76-s + 81-s + 24·83-s + 8·86-s + 20·89-s − 2·98-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s − 1/3·9-s − 1/4·16-s − 0.485·17-s + 0.235·18-s + 1.83·19-s − 2·25-s − 0.883·32-s + 0.342·34-s + 1/6·36-s − 1.29·38-s − 1.21·43-s + 2/7·49-s + 1.41·50-s − 3.12·59-s + 7/8·64-s − 2.93·67-s + 0.242·68-s − 0.353·72-s − 0.917·76-s + 1/9·81-s + 2.63·83-s + 0.862·86-s + 2.11·89-s − 0.202·98-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(166464\)    =    \(2^{6} \cdot 3^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(10.6138\)
Root analytic conductor: \(1.80496\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 166464,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3$C_2$ \( 1 + T^{2} \)
17$C_2$ \( 1 + 2 T + p T^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.090594032537686732103395089135, −8.615451952434614667930414636577, −7.900860653729670862169263895362, −7.60595935169870401648096170117, −7.44623840170883548365244775304, −6.47273159107566705483229806147, −6.05490907628685400491216241873, −5.44881183007587606152730843705, −4.87444452782409767096094076150, −4.44310182082410096214841664802, −3.59546300652664291181585701831, −3.19158750626093917850586098771, −2.09925088994484722217684574212, −1.32032952054096010596372886629, 0, 1.32032952054096010596372886629, 2.09925088994484722217684574212, 3.19158750626093917850586098771, 3.59546300652664291181585701831, 4.44310182082410096214841664802, 4.87444452782409767096094076150, 5.44881183007587606152730843705, 6.05490907628685400491216241873, 6.47273159107566705483229806147, 7.44623840170883548365244775304, 7.60595935169870401648096170117, 7.900860653729670862169263895362, 8.615451952434614667930414636577, 9.090594032537686732103395089135

Graph of the $Z$-function along the critical line