Properties

Label 4-725788-1.1-c1e2-0-8
Degree $4$
Conductor $725788$
Sign $-1$
Analytic cond. $46.2768$
Root an. cond. $2.60820$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s + 7-s − 4·8-s − 2·9-s − 2·14-s + 5·16-s + 12·17-s + 4·18-s + 4·19-s − 10·25-s + 3·28-s − 12·29-s − 6·32-s − 24·34-s − 6·36-s − 8·38-s + 49-s + 20·50-s − 4·56-s + 24·58-s + 16·61-s − 2·63-s + 7·64-s + 36·68-s + 8·72-s + 12·76-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s + 0.377·7-s − 1.41·8-s − 2/3·9-s − 0.534·14-s + 5/4·16-s + 2.91·17-s + 0.942·18-s + 0.917·19-s − 2·25-s + 0.566·28-s − 2.22·29-s − 1.06·32-s − 4.11·34-s − 36-s − 1.29·38-s + 1/7·49-s + 2.82·50-s − 0.534·56-s + 3.15·58-s + 2.04·61-s − 0.251·63-s + 7/8·64-s + 4.36·68-s + 0.942·72-s + 1.37·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 725788 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 725788 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(725788\)    =    \(2^{2} \cdot 7^{3} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(46.2768\)
Root analytic conductor: \(2.60820\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 725788,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
7$C_1$ \( 1 - T \)
23$C_2$ \( 1 + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.110149332059267353023137382824, −7.59769760654238825164816496129, −7.57571100088867902110310233811, −7.01062402394523129137998185488, −6.33381612131422841357801936519, −5.57928681742950427486583645839, −5.57132308384623995366860612457, −5.32616093306835891028088920065, −3.97448209386129731451102084779, −3.73919187382497721540937213023, −3.06849498900201108772759649392, −2.49577833291038984931506482388, −1.63743099327135487468573944042, −1.18173816534949059288556508761, 0, 1.18173816534949059288556508761, 1.63743099327135487468573944042, 2.49577833291038984931506482388, 3.06849498900201108772759649392, 3.73919187382497721540937213023, 3.97448209386129731451102084779, 5.32616093306835891028088920065, 5.57132308384623995366860612457, 5.57928681742950427486583645839, 6.33381612131422841357801936519, 7.01062402394523129137998185488, 7.57571100088867902110310233811, 7.59769760654238825164816496129, 8.110149332059267353023137382824

Graph of the $Z$-function along the critical line