Properties

Label 4-494e2-1.1-c1e2-0-3
Degree $4$
Conductor $244036$
Sign $1$
Analytic cond. $15.5599$
Root an. cond. $1.98610$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4-s − 3·9-s − 2·12-s − 13-s + 16-s + 6·17-s − 2·23-s + 6·25-s + 14·27-s − 10·29-s − 3·36-s + 2·39-s + 8·43-s − 2·48-s − 5·49-s − 12·51-s − 52-s − 2·53-s + 4·61-s + 64-s + 6·68-s + 4·69-s − 12·75-s − 20·79-s − 4·81-s + 20·87-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/2·4-s − 9-s − 0.577·12-s − 0.277·13-s + 1/4·16-s + 1.45·17-s − 0.417·23-s + 6/5·25-s + 2.69·27-s − 1.85·29-s − 1/2·36-s + 0.320·39-s + 1.21·43-s − 0.288·48-s − 5/7·49-s − 1.68·51-s − 0.138·52-s − 0.274·53-s + 0.512·61-s + 1/8·64-s + 0.727·68-s + 0.481·69-s − 1.38·75-s − 2.25·79-s − 4/9·81-s + 2.14·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244036 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244036 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(244036\)    =    \(2^{2} \cdot 13^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(15.5599\)
Root analytic conductor: \(1.98610\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 244036,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9307361842\)
\(L(\frac12)\) \(\approx\) \(0.9307361842\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_2$ \( 1 + T + p T^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.931144923873587015073673694927, −8.408486909011940238981299566497, −8.081403556814365619620991486748, −7.25038064772684706053554512263, −7.23769136560338131219122632388, −6.36375886203681583526027515427, −5.98634322619209752201921634912, −5.59820256126613597041086249059, −5.28069074518443602737935578596, −4.67550199492678466714172566208, −3.86057015395193111701613139713, −3.10975673351384299574625047165, −2.75001081480826495914336737773, −1.72024833938566855701291965497, −0.62500790976805621272166526863, 0.62500790976805621272166526863, 1.72024833938566855701291965497, 2.75001081480826495914336737773, 3.10975673351384299574625047165, 3.86057015395193111701613139713, 4.67550199492678466714172566208, 5.28069074518443602737935578596, 5.59820256126613597041086249059, 5.98634322619209752201921634912, 6.36375886203681583526027515427, 7.23769136560338131219122632388, 7.25038064772684706053554512263, 8.081403556814365619620991486748, 8.408486909011940238981299566497, 8.931144923873587015073673694927

Graph of the $Z$-function along the critical line