Properties

Label 4-152352-1.1-c1e2-0-0
Degree $4$
Conductor $152352$
Sign $1$
Analytic cond. $9.71409$
Root an. cond. $1.76543$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 3·9-s + 4·11-s − 4·13-s + 16-s + 3·18-s − 4·22-s + 2·23-s + 6·25-s + 4·26-s − 32-s − 3·36-s − 8·37-s + 4·44-s − 2·46-s + 2·49-s − 6·50-s − 4·52-s + 24·59-s − 16·61-s + 64-s + 3·72-s + 12·73-s + 8·74-s + 9·81-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 9-s + 1.20·11-s − 1.10·13-s + 1/4·16-s + 0.707·18-s − 0.852·22-s + 0.417·23-s + 6/5·25-s + 0.784·26-s − 0.176·32-s − 1/2·36-s − 1.31·37-s + 0.603·44-s − 0.294·46-s + 2/7·49-s − 0.848·50-s − 0.554·52-s + 3.12·59-s − 2.04·61-s + 1/8·64-s + 0.353·72-s + 1.40·73-s + 0.929·74-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152352 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152352 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(152352\)    =    \(2^{5} \cdot 3^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(9.71409\)
Root analytic conductor: \(1.76543\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 152352,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.008733098\)
\(L(\frac12)\) \(\approx\) \(1.008733098\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_2$ \( 1 + p T^{2} \)
23$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.129184083267107993457187313853, −8.971935452602447588346290189052, −8.382468096458557457042578955575, −7.934797090973996806072777552438, −7.33780908492387851558326348269, −6.69441913641732873591204403077, −6.66534938649924724791949745826, −5.84432417959727908710252168629, −5.20363792939207012426517080907, −4.85472928398317566931109907696, −3.91541130112892355023471797064, −3.32533933556374790726950819131, −2.63232737474552247848840602025, −1.91815073870342461472602834954, −0.75831066970804062736803199920, 0.75831066970804062736803199920, 1.91815073870342461472602834954, 2.63232737474552247848840602025, 3.32533933556374790726950819131, 3.91541130112892355023471797064, 4.85472928398317566931109907696, 5.20363792939207012426517080907, 5.84432417959727908710252168629, 6.66534938649924724791949745826, 6.69441913641732873591204403077, 7.33780908492387851558326348269, 7.934797090973996806072777552438, 8.382468096458557457042578955575, 8.971935452602447588346290189052, 9.129184083267107993457187313853

Graph of the $Z$-function along the critical line