Properties

Label 4-384e2-1.1-c1e2-0-15
Degree $4$
Conductor $147456$
Sign $1$
Analytic cond. $9.40192$
Root an. cond. $1.75107$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s − 4·11-s + 4·13-s + 8·23-s − 6·25-s − 4·27-s − 8·33-s + 20·37-s + 8·39-s − 16·47-s + 2·49-s + 28·59-s + 4·61-s + 16·69-s + 24·71-s + 28·73-s − 12·75-s − 11·81-s − 12·83-s − 4·97-s − 4·99-s − 4·107-s − 12·109-s + 40·111-s + 4·117-s − 10·121-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s − 1.20·11-s + 1.10·13-s + 1.66·23-s − 6/5·25-s − 0.769·27-s − 1.39·33-s + 3.28·37-s + 1.28·39-s − 2.33·47-s + 2/7·49-s + 3.64·59-s + 0.512·61-s + 1.92·69-s + 2.84·71-s + 3.27·73-s − 1.38·75-s − 1.22·81-s − 1.31·83-s − 0.406·97-s − 0.402·99-s − 0.386·107-s − 1.14·109-s + 3.79·111-s + 0.369·117-s − 0.909·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147456 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147456 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(147456\)    =    \(2^{14} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(9.40192\)
Root analytic conductor: \(1.75107\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 147456,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.351695258\)
\(L(\frac12)\) \(\approx\) \(2.351695258\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.385355573475711088007535446099, −8.675368536957604275874860747441, −8.173183686627627779120693205031, −8.088659191412945349881968287052, −7.63242500478736670765641851926, −6.78571919296342801026858814862, −6.52256885432452015704757780960, −5.64130249043000575312616744005, −5.34050418818343429420051907291, −4.62995407509459210959268189869, −3.73824894896581631226090928700, −3.56276783709589056726776122484, −2.46608091328452001690059553408, −2.44235807183272353930685105042, −1.02724387350145696940295704376, 1.02724387350145696940295704376, 2.44235807183272353930685105042, 2.46608091328452001690059553408, 3.56276783709589056726776122484, 3.73824894896581631226090928700, 4.62995407509459210959268189869, 5.34050418818343429420051907291, 5.64130249043000575312616744005, 6.52256885432452015704757780960, 6.78571919296342801026858814862, 7.63242500478736670765641851926, 8.088659191412945349881968287052, 8.173183686627627779120693205031, 8.675368536957604275874860747441, 9.385355573475711088007535446099

Graph of the $Z$-function along the critical line