Properties

Label 4-322e2-1.1-c1e2-0-1
Degree $4$
Conductor $103684$
Sign $-1$
Analytic cond. $6.61098$
Root an. cond. $1.60349$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·7-s − 4·8-s − 6·9-s + 4·11-s + 8·14-s + 5·16-s + 12·18-s − 8·22-s + 2·23-s + 6·25-s − 12·28-s + 4·29-s − 6·32-s − 18·36-s − 8·37-s + 20·43-s + 12·44-s − 4·46-s + 9·49-s − 12·50-s − 8·53-s + 16·56-s − 8·58-s + 24·63-s + 7·64-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 1.51·7-s − 1.41·8-s − 2·9-s + 1.20·11-s + 2.13·14-s + 5/4·16-s + 2.82·18-s − 1.70·22-s + 0.417·23-s + 6/5·25-s − 2.26·28-s + 0.742·29-s − 1.06·32-s − 3·36-s − 1.31·37-s + 3.04·43-s + 1.80·44-s − 0.589·46-s + 9/7·49-s − 1.69·50-s − 1.09·53-s + 2.13·56-s − 1.05·58-s + 3.02·63-s + 7/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 103684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 103684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(103684\)    =    \(2^{2} \cdot 7^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(6.61098\)
Root analytic conductor: \(1.60349\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 103684,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
23$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.052261676116547781964364742438, −8.971935452602447588346290189052, −8.659904731263005672439155026721, −7.927191639260373557159137642919, −7.36385009266802735585262564707, −6.69441913641732873591204403077, −6.52483267466185238810930678826, −5.84432417959727908710252168629, −5.57653141631531896664928182342, −4.45284615884695323748315797805, −3.53555410864630123788166205174, −2.91261745614448351218691160624, −2.63232737474552247848840602025, −1.20032515009423146216969398573, 0, 1.20032515009423146216969398573, 2.63232737474552247848840602025, 2.91261745614448351218691160624, 3.53555410864630123788166205174, 4.45284615884695323748315797805, 5.57653141631531896664928182342, 5.84432417959727908710252168629, 6.52483267466185238810930678826, 6.69441913641732873591204403077, 7.36385009266802735585262564707, 7.927191639260373557159137642919, 8.659904731263005672439155026721, 8.971935452602447588346290189052, 9.052261676116547781964364742438

Graph of the $Z$-function along the critical line