Properties

Label 4-88e2-1.1-c1e2-0-5
Degree $4$
Conductor $7744$
Sign $-1$
Analytic cond. $0.493764$
Root an. cond. $0.838262$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·5-s − 5·9-s − 8·13-s + 12·17-s + 17·25-s − 2·37-s + 30·45-s − 10·49-s − 12·53-s − 8·61-s + 48·65-s − 8·73-s + 16·81-s − 72·85-s − 18·89-s − 14·97-s + 36·101-s + 4·109-s − 30·113-s + 40·117-s + 121-s − 18·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯
L(s)  = 1  − 2.68·5-s − 5/3·9-s − 2.21·13-s + 2.91·17-s + 17/5·25-s − 0.328·37-s + 4.47·45-s − 1.42·49-s − 1.64·53-s − 1.02·61-s + 5.95·65-s − 0.936·73-s + 16/9·81-s − 7.80·85-s − 1.90·89-s − 1.42·97-s + 3.58·101-s + 0.383·109-s − 2.82·113-s + 3.69·117-s + 1/11·121-s − 1.60·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7744\)    =    \(2^{6} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(0.493764\)
Root analytic conductor: \(0.838262\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 7744,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
37$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
71$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.52932662806962264853358891658, −11.33372769095583858463760631653, −10.42805632650209012086523138057, −9.813753565180213813561671136388, −9.146174464181464239622953038476, −8.132665807481574488057539990847, −7.992911069953808459961425963145, −7.60852684015633966980596452192, −6.99346836799162715894329128020, −5.78719635391273558621520357914, −5.11227132195889762323685903220, −4.40400371694164943841525727402, −3.27381985666804460223319703873, −3.10139317797780286714650046035, 0, 3.10139317797780286714650046035, 3.27381985666804460223319703873, 4.40400371694164943841525727402, 5.11227132195889762323685903220, 5.78719635391273558621520357914, 6.99346836799162715894329128020, 7.60852684015633966980596452192, 7.992911069953808459961425963145, 8.132665807481574488057539990847, 9.146174464181464239622953038476, 9.813753565180213813561671136388, 10.42805632650209012086523138057, 11.33372769095583858463760631653, 11.52932662806962264853358891658

Graph of the $Z$-function along the critical line