Properties

Label 4-44e2-1.1-c1e2-0-0
Degree $4$
Conductor $1936$
Sign $1$
Analytic cond. $0.123441$
Root an. cond. $0.592740$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 2·5-s − 5·9-s − 4·10-s + 8·13-s − 4·16-s − 4·17-s + 10·18-s + 4·20-s − 7·25-s − 16·26-s + 8·32-s + 8·34-s − 10·36-s + 6·37-s − 16·41-s − 10·45-s − 10·49-s + 14·50-s + 16·52-s − 12·53-s + 24·61-s − 8·64-s + 16·65-s − 8·68-s + 8·73-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 0.894·5-s − 5/3·9-s − 1.26·10-s + 2.21·13-s − 16-s − 0.970·17-s + 2.35·18-s + 0.894·20-s − 7/5·25-s − 3.13·26-s + 1.41·32-s + 1.37·34-s − 5/3·36-s + 0.986·37-s − 2.49·41-s − 1.49·45-s − 1.42·49-s + 1.97·50-s + 2.21·52-s − 1.64·53-s + 3.07·61-s − 64-s + 1.98·65-s − 0.970·68-s + 0.936·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1936 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1936 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1936\)    =    \(2^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(0.123441\)
Root analytic conductor: \(0.592740\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1936,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3703087246\)
\(L(\frac12)\) \(\approx\) \(0.3703087246\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56863905712999451342489435843, −12.95575045127536336185363327794, −11.50606278511501469560040413868, −11.45125861034521058353374083886, −10.88023677523055899886301116177, −10.03550909718107888433464868208, −9.531323384279074079649336150802, −8.603539619290756001226038948684, −8.595888941067365837350463793393, −7.81893826163275369649161903506, −6.36261389471308870138602900888, −6.29323672924194667424631097798, −5.16796004190121525070885092557, −3.57632858228471856718550416679, −2.01168702564605014700712887669, 2.01168702564605014700712887669, 3.57632858228471856718550416679, 5.16796004190121525070885092557, 6.29323672924194667424631097798, 6.36261389471308870138602900888, 7.81893826163275369649161903506, 8.595888941067365837350463793393, 8.603539619290756001226038948684, 9.531323384279074079649336150802, 10.03550909718107888433464868208, 10.88023677523055899886301116177, 11.45125861034521058353374083886, 11.50606278511501469560040413868, 12.95575045127536336185363327794, 13.56863905712999451342489435843

Graph of the $Z$-function along the critical line