Properties

Label 4-837e2-1.1-c1e2-0-10
Degree $4$
Conductor $700569$
Sign $-1$
Analytic cond. $44.6688$
Root an. cond. $2.58524$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·7-s − 2·13-s − 4·16-s + 2·19-s + 2·25-s − 4·31-s + 10·37-s + 8·43-s + 17·49-s + 10·61-s − 10·67-s + 10·73-s + 14·79-s + 12·91-s + 18·97-s + 18·103-s − 12·109-s + 24·112-s − 10·121-s + 127-s + 131-s − 12·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  − 2.26·7-s − 0.554·13-s − 16-s + 0.458·19-s + 2/5·25-s − 0.718·31-s + 1.64·37-s + 1.21·43-s + 17/7·49-s + 1.28·61-s − 1.22·67-s + 1.17·73-s + 1.57·79-s + 1.25·91-s + 1.82·97-s + 1.77·103-s − 1.14·109-s + 2.26·112-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s − 1.04·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700569 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700569 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(700569\)    =    \(3^{6} \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(44.6688\)
Root analytic conductor: \(2.58524\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 700569,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
31$C_2$ \( 1 + 4 T + p T^{2} \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 66 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 - T + p T^{2} ) \)
83$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 102 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.974728759160587023789168250825, −7.52511142952145981163200404744, −7.21657895026143250951482792776, −6.63849658081134314972172268796, −6.35176589928687028911514119730, −6.02316516967709113242582870957, −5.37743998111742888238457626329, −4.86191666079255482292079990676, −4.26219951834931360138424798653, −3.65838792827931529908210393063, −3.31070845176509611431043865672, −2.53421397007909328606022910301, −2.34006644478051300829209147005, −0.934836773566159816026389665737, 0, 0.934836773566159816026389665737, 2.34006644478051300829209147005, 2.53421397007909328606022910301, 3.31070845176509611431043865672, 3.65838792827931529908210393063, 4.26219951834931360138424798653, 4.86191666079255482292079990676, 5.37743998111742888238457626329, 6.02316516967709113242582870957, 6.35176589928687028911514119730, 6.63849658081134314972172268796, 7.21657895026143250951482792776, 7.52511142952145981163200404744, 7.974728759160587023789168250825

Graph of the $Z$-function along the critical line