Properties

Label 4-393984-1.1-c1e2-0-11
Degree $4$
Conductor $393984$
Sign $-1$
Analytic cond. $25.1207$
Root an. cond. $2.23876$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·7-s + 2·13-s − 19-s + 4·25-s + 6·31-s + 4·37-s − 12·43-s + 14·49-s − 8·61-s − 6·67-s − 4·73-s + 12·79-s − 12·91-s + 14·97-s + 24·103-s + 14·109-s + 14·121-s + 127-s + 131-s + 6·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 2.26·7-s + 0.554·13-s − 0.229·19-s + 4/5·25-s + 1.07·31-s + 0.657·37-s − 1.82·43-s + 2·49-s − 1.02·61-s − 0.733·67-s − 0.468·73-s + 1.35·79-s − 1.25·91-s + 1.42·97-s + 2.36·103-s + 1.34·109-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.520·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 393984 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 393984 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(393984\)    =    \(2^{8} \cdot 3^{4} \cdot 19\)
Sign: $-1$
Analytic conductor: \(25.1207\)
Root analytic conductor: \(2.23876\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 393984,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 2 T + p T^{2} ) \)
good5$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.628742197230449072719958466090, −7.972147198121465155529483123222, −7.43588217563948000799720190848, −6.92303294215150496614486246894, −6.48121608863810606442811432551, −6.10820245959253627275414470710, −5.97341003266684194011360945435, −4.88481693945744126876044995086, −4.71078454307349734609795501424, −3.70832227259703748651194099905, −3.43280230473037708482638895161, −2.94721435605769244748025274704, −2.27713597109857305205102580308, −1.11984582680003763724163504502, 0, 1.11984582680003763724163504502, 2.27713597109857305205102580308, 2.94721435605769244748025274704, 3.43280230473037708482638895161, 3.70832227259703748651194099905, 4.71078454307349734609795501424, 4.88481693945744126876044995086, 5.97341003266684194011360945435, 6.10820245959253627275414470710, 6.48121608863810606442811432551, 6.92303294215150496614486246894, 7.43588217563948000799720190848, 7.972147198121465155529483123222, 8.628742197230449072719958466090

Graph of the $Z$-function along the critical line