Properties

Label 4-132300-1.1-c1e2-0-11
Degree $4$
Conductor $132300$
Sign $1$
Analytic cond. $8.43556$
Root an. cond. $1.70423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4-s + 2·7-s + 9-s + 12-s + 4·13-s + 16-s − 8·19-s + 2·21-s + 25-s + 27-s + 2·28-s − 8·31-s + 36-s + 4·37-s + 4·39-s + 16·43-s + 48-s + 3·49-s + 4·52-s − 8·57-s + 4·61-s + 2·63-s + 64-s + 16·67-s + 28·73-s + 75-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/2·4-s + 0.755·7-s + 1/3·9-s + 0.288·12-s + 1.10·13-s + 1/4·16-s − 1.83·19-s + 0.436·21-s + 1/5·25-s + 0.192·27-s + 0.377·28-s − 1.43·31-s + 1/6·36-s + 0.657·37-s + 0.640·39-s + 2.43·43-s + 0.144·48-s + 3/7·49-s + 0.554·52-s − 1.05·57-s + 0.512·61-s + 0.251·63-s + 1/8·64-s + 1.95·67-s + 3.27·73-s + 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132300 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132300 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(132300\)    =    \(2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(8.43556\)
Root analytic conductor: \(1.70423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 132300,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.518951744\)
\(L(\frac12)\) \(\approx\) \(2.518951744\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_1$ \( ( 1 - T )^{2} \)
good11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.268646864684040562273313820184, −8.800046649726438641176234759863, −8.319627980737908137853866947983, −8.134234480169490737550982107259, −7.27965583167809929942184453108, −7.16665739633458789232295323445, −6.15797813375789816669713446161, −6.14620005069006563789988203374, −5.29787033315398374470104513854, −4.64849576847169223614699526425, −3.88231405811014601850145796336, −3.71822253537069739639390686069, −2.51414806834535899531438368517, −2.16105217917237072156284139202, −1.18226526293597327102151626443, 1.18226526293597327102151626443, 2.16105217917237072156284139202, 2.51414806834535899531438368517, 3.71822253537069739639390686069, 3.88231405811014601850145796336, 4.64849576847169223614699526425, 5.29787033315398374470104513854, 6.14620005069006563789988203374, 6.15797813375789816669713446161, 7.16665739633458789232295323445, 7.27965583167809929942184453108, 8.134234480169490737550982107259, 8.319627980737908137853866947983, 8.800046649726438641176234759863, 9.268646864684040562273313820184

Graph of the $Z$-function along the critical line