Properties

Label 4-693e2-1.1-c1e2-0-5
Degree $4$
Conductor $480249$
Sign $1$
Analytic cond. $30.6210$
Root an. cond. $2.35236$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s + 4·5-s − 4·11-s + 5·16-s − 12·20-s + 2·25-s + 12·37-s + 12·44-s + 49-s − 12·53-s − 16·55-s − 24·59-s − 3·64-s + 8·67-s + 20·80-s + 28·89-s + 36·97-s − 6·100-s + 16·103-s + 28·113-s + 5·121-s − 28·125-s + 127-s + 131-s + 137-s + 139-s − 36·148-s + ⋯
L(s)  = 1  − 3/2·4-s + 1.78·5-s − 1.20·11-s + 5/4·16-s − 2.68·20-s + 2/5·25-s + 1.97·37-s + 1.80·44-s + 1/7·49-s − 1.64·53-s − 2.15·55-s − 3.12·59-s − 3/8·64-s + 0.977·67-s + 2.23·80-s + 2.96·89-s + 3.65·97-s − 3/5·100-s + 1.57·103-s + 2.63·113-s + 5/11·121-s − 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.95·148-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 480249 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480249 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(480249\)    =    \(3^{4} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(30.6210\)
Root analytic conductor: \(2.35236\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 480249,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.386271862\)
\(L(\frac12)\) \(\approx\) \(1.386271862\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_2$ \( 1 + 4 T + p T^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.783200717465470995950515779184, −7.976525779912433683772333851675, −7.81295430367747747098376616892, −7.39398850413165927730875614743, −6.34518093653275179095390844834, −6.01581061696917710851209529028, −5.94607665445287604157300008429, −5.02709416296405066539370067618, −4.92403553365775964167265796866, −4.46792640657225865455095535714, −3.62088779784825026995011416777, −3.05422074105458389777226041971, −2.28059162307602342837183603744, −1.77611296934943774735876447029, −0.63334663369662260021570161928, 0.63334663369662260021570161928, 1.77611296934943774735876447029, 2.28059162307602342837183603744, 3.05422074105458389777226041971, 3.62088779784825026995011416777, 4.46792640657225865455095535714, 4.92403553365775964167265796866, 5.02709416296405066539370067618, 5.94607665445287604157300008429, 6.01581061696917710851209529028, 6.34518093653275179095390844834, 7.39398850413165927730875614743, 7.81295430367747747098376616892, 7.976525779912433683772333851675, 8.783200717465470995950515779184

Graph of the $Z$-function along the critical line