Properties

Label 4-2002e2-1.1-c1e2-0-0
Degree $4$
Conductor $4008004$
Sign $1$
Analytic cond. $255.553$
Root an. cond. $3.99825$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4-s − 3·9-s − 3·11-s + 2·12-s + 16-s − 6·23-s − 10·25-s − 14·27-s + 10·31-s − 6·33-s − 3·36-s − 14·37-s − 3·44-s − 6·47-s + 2·48-s + 49-s − 24·53-s + 12·59-s + 64-s + 10·67-s − 12·69-s + 24·71-s − 20·75-s − 4·81-s − 36·89-s − 6·92-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/2·4-s − 9-s − 0.904·11-s + 0.577·12-s + 1/4·16-s − 1.25·23-s − 2·25-s − 2.69·27-s + 1.79·31-s − 1.04·33-s − 1/2·36-s − 2.30·37-s − 0.452·44-s − 0.875·47-s + 0.288·48-s + 1/7·49-s − 3.29·53-s + 1.56·59-s + 1/8·64-s + 1.22·67-s − 1.44·69-s + 2.84·71-s − 2.30·75-s − 4/9·81-s − 3.81·89-s − 0.625·92-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4008004 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4008004 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4008004\)    =    \(2^{2} \cdot 7^{2} \cdot 11^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(255.553\)
Root analytic conductor: \(3.99825\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4008004,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.391677390\)
\(L(\frac12)\) \(\approx\) \(1.391677390\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_2$ \( 1 + 3 T + p T^{2} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
79$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 18 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 17 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63380170955425435565378568582, −7.12452515455087807112624959383, −6.54090950323955775391739886563, −6.10743185313712551583625613621, −5.94928285901447704557672794095, −5.27901795354844706811221007129, −5.06509234546123458101387314677, −4.41584211850724569307269915633, −3.60858467418748472558474969025, −3.53538503374708697062546960940, −3.07464268547435599479371512552, −2.33000973337707432224237511883, −2.22414801159896403461802083456, −1.68074999787226013079846229266, −0.35275945748628279067689817923, 0.35275945748628279067689817923, 1.68074999787226013079846229266, 2.22414801159896403461802083456, 2.33000973337707432224237511883, 3.07464268547435599479371512552, 3.53538503374708697062546960940, 3.60858467418748472558474969025, 4.41584211850724569307269915633, 5.06509234546123458101387314677, 5.27901795354844706811221007129, 5.94928285901447704557672794095, 6.10743185313712551583625613621, 6.54090950323955775391739886563, 7.12452515455087807112624959383, 7.63380170955425435565378568582

Graph of the $Z$-function along the critical line