Properties

Label 1-88-88.21-r1-0-0
Degree $1$
Conductor $88$
Sign $1$
Analytic cond. $9.45691$
Root an. cond. $9.45691$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s + 13-s + 15-s − 17-s + 19-s + 21-s + 23-s + 25-s − 27-s + 29-s + 31-s + 35-s − 37-s − 39-s − 41-s + 43-s − 45-s + 47-s + 49-s + 51-s − 53-s − 57-s − 59-s + 61-s + ⋯
L(s)  = 1  − 3-s − 5-s − 7-s + 9-s + 13-s + 15-s − 17-s + 19-s + 21-s + 23-s + 25-s − 27-s + 29-s + 31-s + 35-s − 37-s − 39-s − 41-s + 43-s − 45-s + 47-s + 49-s + 51-s − 53-s − 57-s − 59-s + 61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(88\)    =    \(2^{3} \cdot 11\)
Sign: $1$
Analytic conductor: \(9.45691\)
Root analytic conductor: \(9.45691\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{88} (21, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 88,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8128976988\)
\(L(\frac12)\) \(\approx\) \(0.8128976988\)
\(L(1)\) \(\approx\) \(0.6697898042\)
\(L(1)\) \(\approx\) \(0.6697898042\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 - T \)
19 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 + T \)
31 \( 1 + T \)
37 \( 1 - T \)
41 \( 1 - T \)
43 \( 1 + T \)
47 \( 1 + T \)
53 \( 1 - T \)
59 \( 1 - T \)
61 \( 1 + T \)
67 \( 1 - T \)
71 \( 1 + T \)
73 \( 1 - T \)
79 \( 1 - T \)
83 \( 1 + T \)
89 \( 1 + T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−30.32005264367336474866091155509, −28.96596614905071554921367189104, −28.42118493953989373280113983020, −27.22885730288130602742019685781, −26.36852085333239331170521203497, −24.8644313677777209027372523428, −23.676953187510776830588572487266, −22.89033733022005848454303275810, −22.18034526869468808642779752034, −20.67238884142794973539594451137, −19.38837875854101961212519248292, −18.5057979300433088154887027967, −17.22257780305087694883660839119, −15.894777281237203004382324847772, −15.64183384858501162522590636844, −13.527894962370063199302277343555, −12.41353236887593202576114768172, −11.4243001095607364466285374091, −10.39277387022713974860724786817, −8.8650999009525606659970504683, −7.21400784145741596856969536140, −6.24628111273611913389858367498, −4.68364736988830086724666555597, −3.3521221386264899320004540654, −0.75461682057381672196926706822, 0.75461682057381672196926706822, 3.3521221386264899320004540654, 4.68364736988830086724666555597, 6.24628111273611913389858367498, 7.21400784145741596856969536140, 8.8650999009525606659970504683, 10.39277387022713974860724786817, 11.4243001095607364466285374091, 12.41353236887593202576114768172, 13.527894962370063199302277343555, 15.64183384858501162522590636844, 15.894777281237203004382324847772, 17.22257780305087694883660839119, 18.5057979300433088154887027967, 19.38837875854101961212519248292, 20.67238884142794973539594451137, 22.18034526869468808642779752034, 22.89033733022005848454303275810, 23.676953187510776830588572487266, 24.8644313677777209027372523428, 26.36852085333239331170521203497, 27.22885730288130602742019685781, 28.42118493953989373280113983020, 28.96596614905071554921367189104, 30.32005264367336474866091155509

Graph of the $Z$-function along the critical line