Properties

Degree 1
Conductor $ 5 \cdot 17 $
Sign $-0.721 - 0.691i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.707 − 0.707i)2-s + (−0.382 − 0.923i)3-s i·4-s + (−0.923 − 0.382i)6-s + (−0.923 − 0.382i)7-s + (−0.707 − 0.707i)8-s + (−0.707 + 0.707i)9-s + (0.923 + 0.382i)11-s + (−0.923 + 0.382i)12-s + 13-s + (−0.923 + 0.382i)14-s − 16-s + i·18-s + (−0.707 − 0.707i)19-s + i·21-s + (0.923 − 0.382i)22-s + ⋯
L(s,χ)  = 1  + (0.707 − 0.707i)2-s + (−0.382 − 0.923i)3-s i·4-s + (−0.923 − 0.382i)6-s + (−0.923 − 0.382i)7-s + (−0.707 − 0.707i)8-s + (−0.707 + 0.707i)9-s + (0.923 + 0.382i)11-s + (−0.923 + 0.382i)12-s + 13-s + (−0.923 + 0.382i)14-s − 16-s + i·18-s + (−0.707 − 0.707i)19-s + i·21-s + (0.923 − 0.382i)22-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.721 - 0.691i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 85 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.721 - 0.691i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(85\)    =    \(5 \cdot 17\)
\( \varepsilon \)  =  $-0.721 - 0.691i$
motivic weight  =  \(0\)
character  :  $\chi_{85} (28, \cdot )$
Sato-Tate  :  $\mu(16)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 85,\ (0:\ ),\ -0.721 - 0.691i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.4180082932 - 1.040165425i$
$L(\frac12,\chi)$  $\approx$  $0.4180082932 - 1.040165425i$
$L(\chi,1)$  $\approx$  0.8336975523 - 0.8459401743i
$L(1,\chi)$  $\approx$  0.8336975523 - 0.8459401743i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−31.63398534374120821490601845390, −30.231206843064180859297512893770, −29.08325950409002362779533234595, −27.84427415449351002162703124713, −26.780161230430245720398822690927, −25.73815672586503834389092262075, −24.93237663939907670460277198598, −23.31189736300713444434349840526, −22.73893869931058575061254692749, −21.691545849040550168941498087951, −20.92552382945578672808707225343, −19.365642897760628346414288012061, −17.667724027875162990887887862898, −16.57419167383338937950084740816, −15.86263837815704193139859491334, −14.87107171928956619686991183908, −13.63237442283956862340670646971, −12.2925099506938965854021284849, −11.20036471394720563743364890509, −9.54292591875581094615126652938, −8.46667987789755624581608925581, −6.467113960482484473745189301669, −5.79880857731885033754044169690, −4.18546262301354032322334275675, −3.236881047674541608184815230377, 1.16090640106352435432527657070, 2.84010536791698065157579689095, 4.39255405965204270583725931813, 6.145127485204572486639190261123, 6.81774730954602284152942565569, 8.89221131381992961714591060549, 10.42874079978438584394379119885, 11.52495134310966232103955365133, 12.66345146159204603747565036161, 13.371600062990085168885587707700, 14.51121420627659017073439390416, 16.08133454975528569812122150809, 17.446305480237019901607550460228, 18.78523152547981427114412168130, 19.531219347710956526653831193854, 20.52453823783990630347309586261, 22.094243672631528569195612216614, 22.870905437622928571596296900147, 23.64097525181190989504828640812, 24.804236369083603270466835687485, 25.86160175640209501190027289288, 27.71375818938129875926378004896, 28.550292136375133360755625715006, 29.495443847688841230519110377815, 30.28481025710108529635631118633

Graph of the $Z$-function along the critical line