Properties

Label 1-43-43.37-r1-0-0
Degree $1$
Conductor $43$
Sign $0.0861 + 0.996i$
Analytic cond. $4.62099$
Root an. cond. $4.62099$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + (0.5 + 0.866i)3-s + 4-s + (0.5 + 0.866i)5-s + (−0.5 − 0.866i)6-s + (0.5 − 0.866i)7-s − 8-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)10-s + 11-s + (0.5 + 0.866i)12-s + (−0.5 + 0.866i)13-s + (−0.5 + 0.866i)14-s + (−0.5 + 0.866i)15-s + 16-s + (−0.5 + 0.866i)17-s + ⋯
L(s)  = 1  − 2-s + (0.5 + 0.866i)3-s + 4-s + (0.5 + 0.866i)5-s + (−0.5 − 0.866i)6-s + (0.5 − 0.866i)7-s − 8-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)10-s + 11-s + (0.5 + 0.866i)12-s + (−0.5 + 0.866i)13-s + (−0.5 + 0.866i)14-s + (−0.5 + 0.866i)15-s + 16-s + (−0.5 + 0.866i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0861 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0861 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(43\)
Sign: $0.0861 + 0.996i$
Analytic conductor: \(4.62099\)
Root analytic conductor: \(4.62099\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (37, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 43,\ (1:\ ),\ 0.0861 + 0.996i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9197477990 + 0.8436709768i\)
\(L(\frac12)\) \(\approx\) \(0.9197477990 + 0.8436709768i\)
\(L(1)\) \(\approx\) \(0.8679828422 + 0.4058429752i\)
\(L(1)\) \(\approx\) \(0.8679828422 + 0.4058429752i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 \)
good2 \( 1 - T \)
3 \( 1 + (0.5 + 0.866i)T \)
5 \( 1 + (0.5 + 0.866i)T \)
7 \( 1 + (0.5 - 0.866i)T \)
11 \( 1 + T \)
13 \( 1 + (-0.5 + 0.866i)T \)
17 \( 1 + (-0.5 + 0.866i)T \)
19 \( 1 + (0.5 + 0.866i)T \)
23 \( 1 + (-0.5 - 0.866i)T \)
29 \( 1 + (0.5 - 0.866i)T \)
31 \( 1 + (-0.5 - 0.866i)T \)
37 \( 1 + (0.5 + 0.866i)T \)
41 \( 1 + T \)
47 \( 1 + T \)
53 \( 1 + (-0.5 - 0.866i)T \)
59 \( 1 + T \)
61 \( 1 + (0.5 - 0.866i)T \)
67 \( 1 + (-0.5 - 0.866i)T \)
71 \( 1 + (0.5 - 0.866i)T \)
73 \( 1 + (0.5 - 0.866i)T \)
79 \( 1 + (-0.5 + 0.866i)T \)
83 \( 1 + (-0.5 - 0.866i)T \)
89 \( 1 + (0.5 + 0.866i)T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−34.56341959616186880179420607754, −32.99439858440759570823697586390, −31.65968148928727128084356556708, −30.27256313198806360753900635578, −29.28580260602621801917013327816, −28.21226763417084744022917991808, −27.11634759005845422161916774886, −25.396383436861469299782498533293, −24.903929149817166522275972064274, −24.06758745889883642503268159709, −21.75834566481149942836236027872, −20.30192963838427358199968174424, −19.62436074727165960834586876179, −18.01182952892485477824263365019, −17.523393775315170123987799323931, −15.80672083209480138750179692690, −14.32354414208736381328855795403, −12.6126904840729971507181535187, −11.60641861797986386818867806824, −9.38259720648212090240080904773, −8.686153496405728458400500866573, −7.274221837677492256275699867459, −5.646701597283202001520821953513, −2.52271332353344334609617653779, −1.09580141148963236096486757852, 2.06110075350992274517754634234, 3.9370644710261553809570052198, 6.40702451959329461376804207481, 7.89943696573456148333166205595, 9.43800991223500845865315463337, 10.36911215794911280288166030177, 11.45698066352487407606972334062, 14.11651098976765992036488623780, 14.88582026183279639560637185018, 16.56181692370333606205782380282, 17.41119871258341444433738695709, 18.98047379402767906970900106782, 20.06701402255949239176438154445, 21.19768794114394319455197829469, 22.34312742129952092821767183731, 24.3377335335006632025507789482, 25.61523355235269918386877170955, 26.62873154441361867637989874986, 27.104367014013485234884802833643, 28.55913474612112704110269309246, 29.89805525780254720101460713335, 30.82964101792448072500199269662, 32.85033601298427520494306920868, 33.449959835310220127057985134049, 34.45786116028905241653470247152

Graph of the $Z$-function along the critical line