Properties

Degree 1
Conductor $ 37 \cdot 109 $
Sign $0.997 - 0.0698i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.173 − 0.984i)2-s + (−0.993 − 0.116i)3-s + (−0.939 − 0.342i)4-s + (0.973 − 0.230i)5-s + (−0.286 + 0.957i)6-s + (−0.286 + 0.957i)7-s + (−0.5 + 0.866i)8-s + (0.973 + 0.230i)9-s + (−0.0581 − 0.998i)10-s + (−0.0581 + 0.998i)11-s + (0.893 + 0.448i)12-s + (−0.686 − 0.727i)13-s + (0.893 + 0.448i)14-s + (−0.993 + 0.116i)15-s + (0.766 + 0.642i)16-s + (0.173 − 0.984i)17-s + ⋯
L(s,χ)  = 1  + (0.173 − 0.984i)2-s + (−0.993 − 0.116i)3-s + (−0.939 − 0.342i)4-s + (0.973 − 0.230i)5-s + (−0.286 + 0.957i)6-s + (−0.286 + 0.957i)7-s + (−0.5 + 0.866i)8-s + (0.973 + 0.230i)9-s + (−0.0581 − 0.998i)10-s + (−0.0581 + 0.998i)11-s + (0.893 + 0.448i)12-s + (−0.686 − 0.727i)13-s + (0.893 + 0.448i)14-s + (−0.993 + 0.116i)15-s + (0.766 + 0.642i)16-s + (0.173 − 0.984i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.997 - 0.0698i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.997 - 0.0698i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(4033\)    =    \(37 \cdot 109\)
\( \varepsilon \)  =  $0.997 - 0.0698i$
motivic weight  =  \(0\)
character  :  $\chi_{4033} (2856, \cdot )$
Sato-Tate  :  $\mu(27)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 4033,\ (0:\ ),\ 0.997 - 0.0698i)$
$L(\chi,\frac{1}{2})$  $\approx$  $1.137971798 - 0.03977184086i$
$L(\frac12,\chi)$  $\approx$  $1.137971798 - 0.03977184086i$
$L(\chi,1)$  $\approx$  0.8072939337 - 0.2995259953i
$L(1,\chi)$  $\approx$  0.8072939337 - 0.2995259953i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−18.156204584535962984301150687959, −17.50782328746209061790948816408, −16.97291271816605939661631825037, −16.63204145893989954081658120754, −16.06662361869741269093063782271, −14.97694300515197435893099708642, −14.51814009681406760390148165575, −13.64574551808542933852618944019, −13.14948302818904247353117244036, −12.62762891213064433883460769507, −11.58469562106961209000568254333, −10.59519540872236140024955985220, −10.387377731937256139346271462523, −9.35177062779509095933695284141, −8.88713464105425864461268808136, −7.714856478939850470107621846805, −6.95778383196501549059259549169, −6.46457546081572687944562729104, −5.9648004661146472398165695904, −5.12492702312858491232874403091, −4.48579559665175628264635945719, −3.74826054481904237057235785964, −2.7055710216171043039942187276, −1.34808241933156876456041888045, −0.457827165092910650243125792500, 0.849914400561401153010872853, 1.75092555077409051635983547480, 2.40401937568450905176844364392, 3.135105703928610309133014955807, 4.51382765605877702269526692213, 4.92346856942743226008708768747, 5.66688628718961893104956398776, 6.09283766416358225548165950988, 7.1519593826515796520248153730, 8.08565061351092850560457044092, 9.22675790148151521874732313282, 9.64168014730167432199952637971, 10.17230511726921847415489041740, 10.86344625555119878949644743868, 11.82058188410457107898742715688, 12.28816256262239244724933061875, 12.75315089484770664049037603295, 13.33472602506550817161101937456, 14.232348463317634236403113886972, 15.03206084172030483556989604133, 15.68067969305750116244672952053, 16.696435561105145761657212585, 17.44690524070541684719277885578, 17.75572516964870492937021650582, 18.42921873176779612662320675251

Graph of the $Z$-function along the critical line