Properties

Degree 1
Conductor 29
Sign $0.855 - 0.517i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.623 − 0.781i)2-s + (−0.222 + 0.974i)3-s + (−0.222 − 0.974i)4-s + (0.623 − 0.781i)5-s + (0.623 + 0.781i)6-s + (−0.222 + 0.974i)7-s + (−0.900 − 0.433i)8-s + (−0.900 − 0.433i)9-s + (−0.222 − 0.974i)10-s + (−0.900 + 0.433i)11-s + 12-s + (−0.900 + 0.433i)13-s + (0.623 + 0.781i)14-s + (0.623 + 0.781i)15-s + (−0.900 + 0.433i)16-s + 17-s + ⋯
L(s,χ)  = 1  + (0.623 − 0.781i)2-s + (−0.222 + 0.974i)3-s + (−0.222 − 0.974i)4-s + (0.623 − 0.781i)5-s + (0.623 + 0.781i)6-s + (−0.222 + 0.974i)7-s + (−0.900 − 0.433i)8-s + (−0.900 − 0.433i)9-s + (−0.222 − 0.974i)10-s + (−0.900 + 0.433i)11-s + 12-s + (−0.900 + 0.433i)13-s + (0.623 + 0.781i)14-s + (0.623 + 0.781i)15-s + (−0.900 + 0.433i)16-s + 17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.855 - 0.517i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 29 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.855 - 0.517i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(29\)
\( \varepsilon \)  =  $0.855 - 0.517i$
motivic weight  =  \(0\)
character  :  $\chi_{29} (20, \cdot )$
Sato-Tate  :  $\mu(7)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 29,\ (0:\ ),\ 0.855 - 0.517i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(0.8670025821 - 0.2419789471i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(0.8670025821 - 0.2419789471i\)
\(L(\chi,1)\)  \(\approx\)  \(1.107935304 - 0.2465575357i\)
\(L(1,\chi)\)  \(\approx\)  \(1.107935304 - 0.2465575357i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−36.94961694925969965086927833969, −36.07784148589745953785555874544, −34.54052223603958905751855953794, −33.97439334764516360642997561299, −32.565642483692090955492166232507, −31.15216951447500548655986026265, −29.87422545017352444003071125672, −29.34434995150138709418098390670, −26.83677781008153409066475554693, −25.75999515109237803186809704530, −24.654817954722246583627492623241, −23.33703394391592055027966476857, −22.58576655421226264164138668789, −20.959154739538277713774750518522, −18.93799746367965548045941164598, −17.643664362639249722445539823171, −16.617693794563357237382129598645, −14.56242637685005727140846513990, −13.63032461782041315813390405205, −12.449968794676153735961084861045, −10.478710533679796669406020076019, −7.89168470411729630356460724305, −6.84017801857655669265959072418, −5.49183744252799304859137727700, −2.95339600789876898960738874757, 2.61651033357808942884242111086, 4.76049809736198473232714243615, 5.66282989807631649012267817691, 9.14032345328068345315784728183, 10.02645301479179505306856722472, 11.74763329073383371968176783727, 12.96277523568800026875007687731, 14.69076706307787309494151081602, 15.91086718365607048026202776731, 17.62570589298972592738392630703, 19.42733449376387309090769850350, 20.99954262032163585143748860372, 21.463178604150063307236876344128, 22.75725135996340718917740299621, 24.25221451545722138060684098177, 25.83854410020353207462493594906, 27.71427759350211912667125558644, 28.46364549863046286890333186446, 29.38177252567326692571952768931, 31.43322853231579063423886782330, 32.00319791325642011574843912590, 33.17066664678966439088990420063, 34.32700190206809129728835216859, 36.49248713724828751864705575186, 37.39027899654660773251304173249

Graph of the $Z$-function along the critical line