Properties

Degree 1
Conductor 193
Sign $0.623 + 0.782i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.195 − 0.980i)2-s + (0.382 − 0.923i)3-s + (−0.923 − 0.382i)4-s + (−0.634 − 0.773i)5-s + (−0.831 − 0.555i)6-s + (−0.707 − 0.707i)7-s + (−0.555 + 0.831i)8-s + (−0.707 − 0.707i)9-s + (−0.881 + 0.471i)10-s + (0.0980 + 0.995i)11-s + (−0.707 + 0.707i)12-s + (−0.471 + 0.881i)13-s + (−0.831 + 0.555i)14-s + (−0.956 + 0.290i)15-s + (0.707 + 0.707i)16-s + (0.634 − 0.773i)17-s + ⋯
L(s,χ)  = 1  + (0.195 − 0.980i)2-s + (0.382 − 0.923i)3-s + (−0.923 − 0.382i)4-s + (−0.634 − 0.773i)5-s + (−0.831 − 0.555i)6-s + (−0.707 − 0.707i)7-s + (−0.555 + 0.831i)8-s + (−0.707 − 0.707i)9-s + (−0.881 + 0.471i)10-s + (0.0980 + 0.995i)11-s + (−0.707 + 0.707i)12-s + (−0.471 + 0.881i)13-s + (−0.831 + 0.555i)14-s + (−0.956 + 0.290i)15-s + (0.707 + 0.707i)16-s + (0.634 − 0.773i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 193 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.623 + 0.782i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 193 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.623 + 0.782i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(193\)
\( \varepsilon \)  =  $0.623 + 0.782i$
motivic weight  =  \(0\)
character  :  $\chi_{193} (29, \cdot )$
Sato-Tate  :  $\mu(64)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 193,\ (1:\ ),\ 0.623 + 0.782i)$
$L(\chi,\frac{1}{2})$  $\approx$  $-0.4250062101 - 0.2048140768i$
$L(\frac12,\chi)$  $\approx$  $-0.4250062101 - 0.2048140768i$
$L(\chi,1)$  $\approx$  0.3917975778 - 0.7050198852i
$L(1,\chi)$  $\approx$  0.3917975778 - 0.7050198852i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−27.19811713004267570547121657862, −26.71449342128310790370889286226, −25.6418156834672757289427103377, −25.1296894615299657795651547590, −23.77299970685322696153212734267, −22.742139879386093931995060510096, −22.06626298606192698412907036590, −21.442149181048062091125216661054, −19.75529566250359526839524249190, −19.00374103339076494171341700496, −17.915764238609895524261813718627, −16.43706970196738324064191401460, −15.994239409044864321889026544921, −14.94286824690654132131626332384, −14.48940175998725447210911522681, −13.17978918755699444114948278499, −11.90365143670906077295998861606, −10.509184733107185918029192818987, −9.500511121853854251577508841689, −8.40787276928123247425645438370, −7.542279417179362581422011132606, −6.054534068239987485472638527201, −5.24412007147647505634855673714, −3.478409975654738982927377875026, −3.25137692925504024004246335583, 0.159521108856181204606122544290, 1.26460750894296576089580850783, 2.66593792041859242937012299960, 3.91767125688644583013746295602, 4.99350658019211998672679610075, 6.78024754458156231732415410856, 7.78545931539664737222658162803, 9.11770623291577909736499966583, 9.82469818142747536501465795095, 11.52275035698351791857762778386, 12.19897359770921263257611770094, 13.01653327344440393677059574897, 13.84516379074241262693004079068, 14.90931713135423166093389909092, 16.47881417726309408563208343869, 17.49752990566683621548484946334, 18.68960306068743439469807598870, 19.4412019998108813603997766564, 20.24421303306749503101517131620, 20.6845964666645843636330315643, 22.3582460687068570466876419460, 23.20555276327165452888519227737, 23.83733437199961204810935226044, 24.87197794599962052953505395691, 26.15953186785737641233844165961

Graph of the $Z$-function along the critical line