Properties

Degree 1
Conductor 17
Sign $0.739 - 0.673i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  i·2-s + (0.707 + 0.707i)3-s − 4-s + (−0.707 − 0.707i)5-s + (0.707 − 0.707i)6-s + (−0.707 + 0.707i)7-s + i·8-s + i·9-s + (−0.707 + 0.707i)10-s + (0.707 − 0.707i)11-s + (−0.707 − 0.707i)12-s − 13-s + (0.707 + 0.707i)14-s i·15-s + 16-s + ⋯
L(s,χ)  = 1  i·2-s + (0.707 + 0.707i)3-s − 4-s + (−0.707 − 0.707i)5-s + (0.707 − 0.707i)6-s + (−0.707 + 0.707i)7-s + i·8-s + i·9-s + (−0.707 + 0.707i)10-s + (0.707 − 0.707i)11-s + (−0.707 − 0.707i)12-s − 13-s + (0.707 + 0.707i)14-s i·15-s + 16-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.739 - 0.673i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 17 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.739 - 0.673i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(17\)
\( \varepsilon \)  =  $0.739 - 0.673i$
motivic weight  =  \(0\)
character  :  $\chi_{17} (9, \cdot )$
Sato-Tate  :  $\mu(8)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 17,\ (0:\ ),\ 0.739 - 0.673i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.5807245684 - 0.2248635705i$
$L(\frac12,\chi)$  $\approx$  $0.5807245684 - 0.2248635705i$
$L(\chi,1)$  $\approx$  0.8412819557 - 0.2607920837i
$L(1,\chi)$  $\approx$  0.8412819557 - 0.2607920837i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−42.061728316424146917429279822682, −40.98296614454602221763597177948, −39.05857314286053238935053734852, −37.34202697322947125296670875412, −35.856980322047274678357208150409, −35.23177510386508830173456058388, −33.64124875849802388347511618307, −32.094954838183972985893136613982, −31.00830660795214613583261499309, −29.676538417633617230501409897540, −27.23645078646237448660705955298, −26.18826393503240730471673423900, −25.03639525135445337989798997153, −23.55435493382188059643245697127, −22.5283052827079345732345438771, −19.83031510123342842902457411670, −18.759036754209906446697417528529, −17.095396259645679961870329884163, −15.199466723475587911399842111731, −14.1405308258296735664314752950, −12.50111717073719875221216019938, −9.63398131799367961856970535390, −7.64497211191416669983437925264, −6.761948321041484672115641845354, −3.73234531397038605182942743202, 3.03085021754411121651803365475, 4.71512875016980910626184728491, 8.533109263551343292679234102286, 9.58696179846013643547410728982, 11.57473470221158547204510748840, 13.11541261636260959551172937378, 14.96366013445572926040451475996, 16.65682053984199700949071927411, 19.17269032844112991056189821387, 19.862604940973289620007646282, 21.38249265328479352279990162659, 22.50091907098631848647446969433, 24.62558193307131620423413490107, 26.54501481103078000322250516549, 27.611458380906137526811615674624, 28.77816803021989973591876294860, 30.61290869301841514582147870720, 31.95109387779334854941971199316, 32.344940951259973472144765426760, 34.97795633295879432431146639064, 36.35268278308999465632675897784, 37.59076506490882900091239033580, 38.743939439628778238940232207165, 39.54038332050637170033840409929, 41.223565741636124516117175386745

Graph of the $Z$-function along the critical line