Properties

Label 1-148-148.147-r1-0-0
Degree $1$
Conductor $148$
Sign $1$
Analytic cond. $15.9048$
Root an. cond. $15.9048$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s − 11-s − 13-s + 15-s − 17-s + 19-s + 21-s + 23-s + 25-s − 27-s − 29-s + 31-s + 33-s + 35-s + 39-s + 41-s + 43-s − 45-s − 47-s + 49-s + 51-s + 53-s + 55-s − 57-s + ⋯
L(s)  = 1  − 3-s − 5-s − 7-s + 9-s − 11-s − 13-s + 15-s − 17-s + 19-s + 21-s + 23-s + 25-s − 27-s − 29-s + 31-s + 33-s + 35-s + 39-s + 41-s + 43-s − 45-s − 47-s + 49-s + 51-s + 53-s + 55-s − 57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(148\)    =    \(2^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(15.9048\)
Root analytic conductor: \(15.9048\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{148} (147, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 148,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5090392253\)
\(L(\frac12)\) \(\approx\) \(0.5090392253\)
\(L(1)\) \(\approx\) \(0.5164746507\)
\(L(1)\) \(\approx\) \(0.5164746507\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 \)
good3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 - T \)
19 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 - T \)
31 \( 1 + T \)
41 \( 1 + T \)
43 \( 1 + T \)
47 \( 1 - T \)
53 \( 1 + T \)
59 \( 1 + T \)
61 \( 1 - T \)
67 \( 1 - T \)
71 \( 1 - T \)
73 \( 1 + T \)
79 \( 1 + T \)
83 \( 1 - T \)
89 \( 1 - T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−28.055929388343378262423651035122, −26.86259990788137381775504418031, −26.33956052661445138027422280555, −24.62117613901229929362366241268, −23.9151107348469192225696089456, −22.72266633666223580699904520275, −22.48803894206718246379167085679, −21.07172436882948145435110476809, −19.759548636801391083349159962029, −18.94345085355237349573807131880, −17.90185163118126319447330078031, −16.68778427474795209157130932474, −15.88460037020232438567587937272, −15.16233624302250647841480000421, −13.25896422315704832833979452990, −12.47909993027605684188687266731, −11.47446809121786589720706013463, −10.4851387649294303925375890204, −9.33777644469170663419961742082, −7.6207396362520879513361003277, −6.840412086404635360259461624026, −5.422004887766601355090790590072, −4.331561162560183161429336269974, −2.84198705815088156092677036033, −0.50489835112590698642863946765, 0.50489835112590698642863946765, 2.84198705815088156092677036033, 4.331561162560183161429336269974, 5.422004887766601355090790590072, 6.840412086404635360259461624026, 7.6207396362520879513361003277, 9.33777644469170663419961742082, 10.4851387649294303925375890204, 11.47446809121786589720706013463, 12.47909993027605684188687266731, 13.25896422315704832833979452990, 15.16233624302250647841480000421, 15.88460037020232438567587937272, 16.68778427474795209157130932474, 17.90185163118126319447330078031, 18.94345085355237349573807131880, 19.759548636801391083349159962029, 21.07172436882948145435110476809, 22.48803894206718246379167085679, 22.72266633666223580699904520275, 23.9151107348469192225696089456, 24.62117613901229929362366241268, 26.33956052661445138027422280555, 26.86259990788137381775504418031, 28.055929388343378262423651035122

Graph of the $Z$-function along the critical line