Properties

Degree 1
Conductor 139
Sign $0.828 + 0.560i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.829 − 0.557i)2-s + (−0.648 + 0.761i)3-s + (0.377 + 0.926i)4-s + (0.803 + 0.595i)5-s + (0.962 − 0.269i)6-s + (−0.247 − 0.968i)7-s + (0.203 − 0.979i)8-s + (−0.158 − 0.987i)9-s + (−0.334 − 0.942i)10-s + (0.538 + 0.842i)11-s + (−0.949 − 0.313i)12-s + (0.983 + 0.181i)13-s + (−0.334 + 0.942i)14-s + (−0.974 + 0.225i)15-s + (−0.715 + 0.699i)16-s + (−0.877 − 0.480i)17-s + ⋯
L(s,χ)  = 1  + (−0.829 − 0.557i)2-s + (−0.648 + 0.761i)3-s + (0.377 + 0.926i)4-s + (0.803 + 0.595i)5-s + (0.962 − 0.269i)6-s + (−0.247 − 0.968i)7-s + (0.203 − 0.979i)8-s + (−0.158 − 0.987i)9-s + (−0.334 − 0.942i)10-s + (0.538 + 0.842i)11-s + (−0.949 − 0.313i)12-s + (0.983 + 0.181i)13-s + (−0.334 + 0.942i)14-s + (−0.974 + 0.225i)15-s + (−0.715 + 0.699i)16-s + (−0.877 − 0.480i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 139 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.828 + 0.560i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 139 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.828 + 0.560i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(139\)
\( \varepsilon \)  =  $0.828 + 0.560i$
motivic weight  =  \(0\)
character  :  $\chi_{139} (9, \cdot )$
Sato-Tate  :  $\mu(69)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 139,\ (0:\ ),\ 0.828 + 0.560i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.6564983689 + 0.2013011320i$
$L(\frac12,\chi)$  $\approx$  $0.6564983689 + 0.2013011320i$
$L(\chi,1)$  $\approx$  0.6975047211 + 0.08117942817i
$L(1,\chi)$  $\approx$  0.6975047211 + 0.08117942817i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−28.33974231874748407588953085083, −27.67081108708496841392002611026, −26.11034322657179816320808782056, −25.195790517955958335901334712097, −24.54772779250943172083792557352, −23.83542344428184464459838355412, −22.46923367766283457853445906654, −21.44470442290739749594282404485, −19.95000712694060724343912934656, −18.93129914221810256150339858168, −18.12757284289457545678765332593, −17.28901061420853646881860716850, −16.43275473636926940883297038290, −15.41871736814933896518227798402, −13.843701640975677388203783488230, −12.95324530548079712238526590245, −11.56693300789305631463016476413, −10.61015953011868522098489617962, −8.95153371165468850705086743906, −8.57838049414720396765162876087, −6.764477173374369220378222751286, −6.03639358348435842340285500900, −5.16853006678720859654769732030, −2.323927505927401992544787997625, −1.02090318544597527865432710499, 1.424135742119968711614467936725, 3.244261520752057459093209769045, 4.385887167065032367915872508779, 6.29158246359149110226924178071, 7.1251320250249216359950615031, 8.993927767991027980669889545140, 9.89529581205501361539079454, 10.63257879620361607334751724340, 11.47080877966989161697363682685, 12.86291425546429729052586506749, 14.14180044159253683208912010919, 15.6190778574324470504879342672, 16.6608242057610417021083522722, 17.50583973008804795403533187293, 18.13000298621885835860950124955, 19.53986253439961772455592603847, 20.7123463849578461272375610436, 21.24474716093376402638413515998, 22.55993781184789877748078637402, 23.027469179446155855718597993812, 24.98103598461746438054581395913, 25.93449881263960458074497830156, 26.6958619605110219044698753351, 27.47231492788707287690375506048, 28.62822492869591790722906711573

Graph of the $Z$-function along the critical line