Properties

Degree 1
Conductor $ 2^{2} \cdot 29 $
Sign $-0.310 + 0.950i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.623 − 0.781i)3-s + (−0.900 − 0.433i)5-s + (−0.623 + 0.781i)7-s + (−0.222 − 0.974i)9-s + (−0.222 + 0.974i)11-s + (−0.222 + 0.974i)13-s + (−0.900 + 0.433i)15-s − 17-s + (0.623 + 0.781i)19-s + (0.222 + 0.974i)21-s + (0.900 − 0.433i)23-s + (0.623 + 0.781i)25-s + (−0.900 − 0.433i)27-s + (−0.900 − 0.433i)31-s + (0.623 + 0.781i)33-s + ⋯
L(s,χ)  = 1  + (0.623 − 0.781i)3-s + (−0.900 − 0.433i)5-s + (−0.623 + 0.781i)7-s + (−0.222 − 0.974i)9-s + (−0.222 + 0.974i)11-s + (−0.222 + 0.974i)13-s + (−0.900 + 0.433i)15-s − 17-s + (0.623 + 0.781i)19-s + (0.222 + 0.974i)21-s + (0.900 − 0.433i)23-s + (0.623 + 0.781i)25-s + (−0.900 − 0.433i)27-s + (−0.900 − 0.433i)31-s + (0.623 + 0.781i)33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 116 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.310 + 0.950i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 116 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.310 + 0.950i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(116\)    =    \(2^{2} \cdot 29\)
\( \varepsilon \)  =  $-0.310 + 0.950i$
motivic weight  =  \(0\)
character  :  $\chi_{116} (91, \cdot )$
Sato-Tate  :  $\mu(14)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 116,\ (1:\ ),\ -0.310 + 0.950i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(0.3472940677 + 0.4789682607i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(0.3472940677 + 0.4789682607i\)
\(L(\chi,1)\)  \(\approx\)  \(0.8241761964 - 0.03736267892i\)
\(L(1,\chi)\)  \(\approx\)  \(0.8241761964 - 0.03736267892i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−28.60672676505921829028145979524, −27.202667933704949431970164217479, −26.822237856701110853022986812710, −25.97203388104659192448783803669, −24.7115783334603054271701684918, −23.45771895285679084865631867106, −22.46721097134394051105960930613, −21.62892709911352385163217080039, −19.98463009604897336699562544478, −19.88664769246738571531492331721, −18.56987273717288695109990974911, −16.96894864859131450142402215915, −15.86554579168447122077083112002, −15.278589629020330116506356265753, −13.96836878699544527958419464035, −13.02078099225303841178190032653, −11.18465062301931133429171241561, −10.56579193947465528521948935637, −9.20663641176627155820318897662, −8.0257575518852407006940375393, −6.94605157407818084975795281286, −5.08407275344337047787550092376, −3.665885424482630632251590190647, −2.97192005447728523564761946414, −0.21994717479969991399289956928, 1.78946448208466202230015421962, 3.20024183239200755387506856500, 4.67770370902070374115940603541, 6.490981537620674502000702687213, 7.49318046573369210773882759757, 8.69081020556594289204518808160, 9.548035246684427855798826222183, 11.569003438240850132829372483842, 12.40063992638583393345544147822, 13.211964814792954210197330274100, 14.72175473453386521539831666306, 15.51200920085857680956160963985, 16.737641539373155897955781870123, 18.253591619717378990531908418667, 19.00384975752735099627996382698, 19.93549192970869269386077890260, 20.75830748419909248039908482264, 22.322047284933026905923039744528, 23.35918890842910229247297793484, 24.29960557480285602374874039217, 25.150608378938258014463321694931, 26.141094189501026243305813737133, 27.17370462916231997370011156486, 28.61458787814843831697522660906, 29.02673236964777028303300920649

Graph of the $Z$-function along the critical line