Properties

Degree 1
Conductor $ 13 \cdot 89 $
Sign $-0.0507 + 0.998i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.971 − 0.235i)2-s + (−0.888 − 0.458i)3-s + (0.888 − 0.458i)4-s + (−0.755 + 0.654i)5-s + (−0.971 − 0.235i)6-s + (0.189 + 0.981i)7-s + (0.755 − 0.654i)8-s + (0.580 + 0.814i)9-s + (−0.580 + 0.814i)10-s + (−0.189 + 0.981i)11-s − 12-s + (0.415 + 0.909i)14-s + (0.971 − 0.235i)15-s + (0.580 − 0.814i)16-s + (−0.235 + 0.971i)17-s + (0.755 + 0.654i)18-s + ⋯
L(s,χ)  = 1  + (0.971 − 0.235i)2-s + (−0.888 − 0.458i)3-s + (0.888 − 0.458i)4-s + (−0.755 + 0.654i)5-s + (−0.971 − 0.235i)6-s + (0.189 + 0.981i)7-s + (0.755 − 0.654i)8-s + (0.580 + 0.814i)9-s + (−0.580 + 0.814i)10-s + (−0.189 + 0.981i)11-s − 12-s + (0.415 + 0.909i)14-s + (0.971 − 0.235i)15-s + (0.580 − 0.814i)16-s + (−0.235 + 0.971i)17-s + (0.755 + 0.654i)18-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 1157 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.0507 + 0.998i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 1157 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.0507 + 0.998i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(1157\)    =    \(13 \cdot 89\)
\( \varepsilon \)  =  $-0.0507 + 0.998i$
motivic weight  =  \(0\)
character  :  $\chi_{1157} (32, \cdot )$
Sato-Tate  :  $\mu(132)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 1157,\ (1:\ ),\ -0.0507 + 0.998i)$
$L(\chi,\frac{1}{2})$  $\approx$  $1.595369823 + 1.678576459i$
$L(\frac12,\chi)$  $\approx$  $1.595369823 + 1.678576459i$
$L(\chi,1)$  $\approx$  1.355240148 + 0.1471708000i
$L(1,\chi)$  $\approx$  1.355240148 + 0.1471708000i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−20.77165847313743034006851673128, −20.61847395955271279078414164688, −19.59877364534208822560815099788, −18.57028215985282944812493958026, −17.368752452383156725980658518470, −16.69827839496681541454828424717, −16.28142449321916294679757583030, −15.58357060154405383024686302641, −14.80651017744006084466799846205, −13.58684056041689347558924251915, −13.291519408831738644702109128356, −11.982448614807107908764449405020, −11.67903291497732242362600804763, −10.92376524154781062622282096870, −10.09222769705014999936792433546, −8.82614207770857908529823430304, −7.74790259711013334087174379600, −7.12026736610835860435452540758, −6.12851972141649995407092704201, −5.17583502839337927485931335902, −4.66691312076871344113306886278, −3.802931793864468065139767666281, −3.11175627523126952717178025419, −1.244825886641822920125360554, −0.41617126881780088680829283332, 1.163618847410124771008751443233, 2.23211077022637488567143315037, 3.02238671266479465447497843262, 4.289424144860105819282201306159, 4.96956102297696943522982377830, 5.81726040863993170983403972051, 6.70326724644064222066481752137, 7.27077958154525541624892390650, 8.20545624844341679265970352235, 9.696655790020796607498519051872, 10.63996532982438084990098275235, 11.35634857036036665353076698767, 11.82050211319288556694756790622, 12.67756410418407820809200354869, 13.10091149900013833713847387577, 14.4239900057213557855884725438, 15.081892396972620592141774321750, 15.63272101420047452763507271258, 16.41580599922887184716203898399, 17.585031809612903737877869265099, 18.26444684330561157045714945911, 19.08762624112167668575217384783, 19.62874432832680917528934760769, 20.65268186563168183430471397163, 21.61464846622785613782671595730

Graph of the $Z$-function along the critical line