Properties

Degree 1
Conductor $ 13 \cdot 89 $
Sign $0.0723 - 0.997i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.959 − 0.281i)2-s + (−0.841 − 0.540i)3-s + (0.841 − 0.540i)4-s + (0.654 − 0.755i)5-s + (−0.959 − 0.281i)6-s + (−0.654 + 0.755i)7-s + (0.654 − 0.755i)8-s + (0.415 + 0.909i)9-s + (0.415 − 0.909i)10-s + (0.654 + 0.755i)11-s − 12-s + (−0.415 + 0.909i)14-s + (−0.959 + 0.281i)15-s + (0.415 − 0.909i)16-s + (−0.959 − 0.281i)17-s + (0.654 + 0.755i)18-s + ⋯
L(s,χ)  = 1  + (0.959 − 0.281i)2-s + (−0.841 − 0.540i)3-s + (0.841 − 0.540i)4-s + (0.654 − 0.755i)5-s + (−0.959 − 0.281i)6-s + (−0.654 + 0.755i)7-s + (0.654 − 0.755i)8-s + (0.415 + 0.909i)9-s + (0.415 − 0.909i)10-s + (0.654 + 0.755i)11-s − 12-s + (−0.415 + 0.909i)14-s + (−0.959 + 0.281i)15-s + (0.415 − 0.909i)16-s + (−0.959 − 0.281i)17-s + (0.654 + 0.755i)18-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 1157 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.0723 - 0.997i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 1157 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.0723 - 0.997i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(1157\)    =    \(13 \cdot 89\)
\( \varepsilon \)  =  $0.0723 - 0.997i$
motivic weight  =  \(0\)
character  :  $\chi_{1157} (25, \cdot )$
Sato-Tate  :  $\mu(22)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 1157,\ (0:\ ),\ 0.0723 - 0.997i)$
$L(\chi,\frac{1}{2})$  $\approx$  $1.732082031 - 1.610944663i$
$L(\frac12,\chi)$  $\approx$  $1.732082031 - 1.610944663i$
$L(\chi,1)$  $\approx$  1.463816182 - 0.6935671234i
$L(1,\chi)$  $\approx$  1.463816182 - 0.6935671234i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−21.6427753243263841016149931682, −21.20452603391416663414248059226, −19.93196612165121459165169717953, −19.47912848864886827431601435399, −17.90973712556136067266745359659, −17.56107547514640687758242800606, −16.596815722063067473091016262507, −16.08950734446679284817440636450, −15.267573476313835281423833636794, −14.43227105971177907411192680562, −13.6094435640703972153588841963, −13.12419482060470537505451592604, −11.97078550152734427186516619383, −11.197159095606189691467626617176, −10.68043779547715215992872332142, −9.82556851189177947032863055175, −8.84178169758565508741496689196, −7.27085223370892972045618069689, −6.67483173801738645200538081094, −6.13648845930426037773518049610, −5.30309377133180252595011328909, −4.26505987813545959185258246413, −3.53832942696587473918541035705, −2.71601297013472756188268029510, −1.20669622236191568677302474012, 0.86110304865701288196082907005, 1.987272984900334122443171796860, 2.54422904416480816745038281892, 4.20934583622272982421814826928, 4.73775701470910177274508289613, 5.91922668419673634039209468049, 6.10080179005422199941345997808, 7.01118580625385767733243356720, 8.20039357248624887140958166517, 9.54248460793171110158226658979, 9.98494882465815785012349902425, 11.17836206712827826956442191401, 11.990577025407958764501533256124, 12.48492746165792365357570274852, 13.05283248507325661338743135605, 13.82497088375459219866685702985, 14.73087046614529655999917970688, 15.85329518868104117523004195319, 16.28368050641620228092057869286, 17.18760549358132214769145844263, 17.99852056885319091676332486614, 18.84589778394876893501325370763, 19.69776588902108531241978670752, 20.408646579204485606515851729981, 21.282847526529150291191275812907

Graph of the $Z$-function along the critical line