Properties

Label 1-1045-1045.1044-r0-0-0
Degree $1$
Conductor $1045$
Sign $1$
Analytic cond. $4.85295$
Root an. cond. $4.85295$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s + 7-s − 8-s + 9-s + 12-s − 13-s − 14-s + 16-s + 17-s − 18-s + 21-s − 23-s − 24-s + 26-s + 27-s + 28-s + 29-s − 31-s − 32-s − 34-s + 36-s + 37-s − 39-s + 41-s + ⋯
L(s)  = 1  − 2-s + 3-s + 4-s − 6-s + 7-s − 8-s + 9-s + 12-s − 13-s − 14-s + 16-s + 17-s − 18-s + 21-s − 23-s − 24-s + 26-s + 27-s + 28-s + 29-s − 31-s − 32-s − 34-s + 36-s + 37-s − 39-s + 41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(4.85295\)
Root analytic conductor: \(4.85295\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1045} (1044, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 1045,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.635030625\)
\(L(\frac12)\) \(\approx\) \(1.635030625\)
\(L(1)\) \(\approx\) \(1.132101619\)
\(L(1)\) \(\approx\) \(1.132101619\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 \)
19 \( 1 \)
good2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 - T \)
17 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 + T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 + T \)
43 \( 1 + T \)
47 \( 1 - T \)
53 \( 1 + T \)
59 \( 1 - T \)
61 \( 1 - T \)
67 \( 1 + T \)
71 \( 1 - T \)
73 \( 1 + T \)
79 \( 1 + T \)
83 \( 1 + T \)
89 \( 1 - T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−21.30723621187722643428886238116, −20.595095077484943238239596582555, −19.82751625309575683545823048511, −19.35816659286193409060258896254, −18.31657383622425928214176155920, −17.93329571795847741735044032882, −16.89300672451798079274714166037, −16.15508739501892846330661532778, −15.19872774539021180981353834881, −14.55610468482603603046112626021, −14.01785228587880129295060213688, −12.60232669165728615618304049872, −12.0036000947278337129896913272, −10.95001475736373849873783436404, −10.098371436516175758172201267262, −9.45391331242561928641935457592, −8.59749343606639663331373171069, −7.66563745787259578805685599829, −7.56929590638183264232915705025, −6.225268278116929425298914412779, −5.03932646373993168302293034692, −3.91991528553599080000997397346, −2.75567243030322196957325020494, −2.04460835684569280896362943688, −1.07136547264467266957227068153, 1.07136547264467266957227068153, 2.04460835684569280896362943688, 2.75567243030322196957325020494, 3.91991528553599080000997397346, 5.03932646373993168302293034692, 6.225268278116929425298914412779, 7.56929590638183264232915705025, 7.66563745787259578805685599829, 8.59749343606639663331373171069, 9.45391331242561928641935457592, 10.098371436516175758172201267262, 10.95001475736373849873783436404, 12.0036000947278337129896913272, 12.60232669165728615618304049872, 14.01785228587880129295060213688, 14.55610468482603603046112626021, 15.19872774539021180981353834881, 16.15508739501892846330661532778, 16.89300672451798079274714166037, 17.93329571795847741735044032882, 18.31657383622425928214176155920, 19.35816659286193409060258896254, 19.82751625309575683545823048511, 20.595095077484943238239596582555, 21.30723621187722643428886238116

Graph of the $Z$-function along the critical line