Properties

Degree 1
Conductor 1021
Sign $-0.289 + 0.957i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.956 + 0.291i)2-s + (−0.982 + 0.183i)3-s + (0.830 + 0.557i)4-s + (−0.993 − 0.110i)5-s + (−0.993 − 0.110i)6-s + (0.165 + 0.986i)7-s + (0.631 + 0.775i)8-s + (0.932 − 0.361i)9-s + (−0.918 − 0.395i)10-s + (0.975 + 0.219i)11-s + (−0.918 − 0.395i)12-s + (−0.602 + 0.798i)13-s + (−0.128 + 0.991i)14-s + (0.997 − 0.0738i)15-s + (0.378 + 0.925i)16-s + (0.869 − 0.494i)17-s + ⋯
L(s,χ)  = 1  + (0.956 + 0.291i)2-s + (−0.982 + 0.183i)3-s + (0.830 + 0.557i)4-s + (−0.993 − 0.110i)5-s + (−0.993 − 0.110i)6-s + (0.165 + 0.986i)7-s + (0.631 + 0.775i)8-s + (0.932 − 0.361i)9-s + (−0.918 − 0.395i)10-s + (0.975 + 0.219i)11-s + (−0.918 − 0.395i)12-s + (−0.602 + 0.798i)13-s + (−0.128 + 0.991i)14-s + (0.997 − 0.0738i)15-s + (0.378 + 0.925i)16-s + (0.869 − 0.494i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 1021 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.289 + 0.957i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 1021 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.289 + 0.957i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(1021\)
\( \varepsilon \)  =  $-0.289 + 0.957i$
motivic weight  =  \(0\)
character  :  $\chi_{1021} (14, \cdot )$
Sato-Tate  :  $\mu(85)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 1021,\ (0:\ ),\ -0.289 + 0.957i)$
$L(\chi,\frac{1}{2})$  $\approx$  $1.088057247 + 1.466059770i$
$L(\frac12,\chi)$  $\approx$  $1.088057247 + 1.466059770i$
$L(\chi,1)$  $\approx$  1.196371089 + 0.6159847706i
$L(1,\chi)$  $\approx$  1.196371089 + 0.6159847706i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−21.70730106020657876121737684428, −20.559717439303832977235277929313, −19.79755660841402805947013809392, −19.37456393909712826288644901248, −18.319813546865300695843587937527, −17.222249731015106227804367261036, −16.6042311082479981764767852311, −15.87474721086943865211910872253, −14.9808529183104309687829833994, −14.25966677865860369574678070529, −13.29242883558185967434061882894, −12.46752285730645967488459884488, −11.8484178758645419154502355927, −11.1810957572685708201083096343, −10.53767592705307410575626027149, −9.692954585680646977761161082196, −7.96792897667047572364795526489, −7.1598983777211636873774240436, −6.737948516972915442913332752703, −5.399477580390865025122837739, −4.92424511386299000945399607545, −3.7268683846204014313994518908, −3.39322739283626395480469414703, −1.54869629714540517274016064402, −0.73808678044098084917927486973, 1.30380469127636469623440257035, 2.6568064118577384263232056915, 3.832792632385169749560530737094, 4.49687908397113566296415766962, 5.2915843061357279967927506964, 6.08540782226461423667122991842, 7.03477092986609377251994895867, 7.640609048361320892073632891304, 8.8801160905142140339554593525, 9.85098301633369284002780442220, 11.24219462537149311739132592033, 11.62989790372680587243556028050, 12.24074438046009348619914704135, 12.70278057824088548985926724910, 14.22440103639871927510841023356, 14.7709352511447633948763319045, 15.5487273852175847451131030171, 16.41830752933979129376809134697, 16.64438727775216267614200988493, 17.79165168748610208242327794326, 18.75692093388870141129817908310, 19.50243815827470073989293047370, 20.57766920952708799302264724556, 21.27792615446599403632672586698, 22.07175387761594299342927578766

Graph of the $Z$-function along the critical line