Properties

Degree 2
Conductor $ 2^{8} \cdot 3^{2} \cdot 5^{2} $
Sign $1$
Motivic weight 0
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s,\rho)$  = 1  − 2·23-s + 2·47-s − 49-s + 2·71-s + 2·73-s + 2·97-s − 121-s + 2·167-s − 169-s + 2·191-s + 2·193-s + 2·239-s + 2·241-s + 2·263-s − 289-s − 2·311-s − 2·313-s − 2·337-s + 2·359-s − 361-s − 2·383-s + 2·409-s − 2·431-s − 2·433-s − 2·457-s − 2·479-s − 2·503-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\R}(s)^{2} \, L(s,\rho)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(57600\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{2}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  \((2,\ 57600,\ (0, 0:\ ),\ 1)\)

Euler product

\[\begin{aligned}L(s,\rho) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Particular Values

\[L(1/2,\rho) \approx 1.133547614\] \[L(1,\rho) \approx 1.011529684\]

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line