Properties

Degree $1$
Conductor $113$
Sign $unknown$
Motivic weight $0$
Primitive yes
Self-dual no

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s,\rho)$  = 1  − 2-s + (−0.707 − 0.707i)3-s + 4-s + (0.707 − 0.707i)5-s + (0.707 + 0.707i)6-s + 7-s − 8-s + i·9-s + (−0.707 + 0.707i)10-s + i·11-s + (−0.707 − 0.707i)12-s i·13-s − 14-s − 15-s + 16-s + (0.707 + 0.707i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 113 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\rho)\cr =\mathstrut & \epsilon \cdot \overline{\Lambda(1-\overline{s})} \quad (\text{with }\epsilon \text{ not computed}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(113\)
Sign: $unknown$
Primitive: yes
Self-dual: no
Selberg data: \((1,\ 113,\ (0:\ ),\ 0)\)

Particular Values

Not enough information (Dirichlet series coefficients/sign of the functional equation) to compute special values.

Euler product

\(L(s,\rho) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.