Properties

Degree $1$
Conductor $1035$
Sign $unknown$
Motivic weight $0$
Primitive yes
Self-dual no

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s,\rho)$  = 1  + (0.499 − 0.866i)2-s + (−0.500 − 0.866i)4-s + (−0.499 + 0.866i)7-s − 0.999·8-s + (0.499 − 0.866i)11-s + (0.500 + 0.866i)13-s + (0.500 + 0.866i)14-s + (−0.499 + 0.866i)16-s + 17-s − 19-s + (−0.500 − 0.866i)22-s + 26-s + 0.999·28-s + (−0.499 + 0.866i)29-s + (−0.500 − 0.866i)31-s + (0.500 + 0.866i)32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\rho)\cr =\mathstrut & \epsilon \cdot \overline{\Lambda(1-\overline{s})} \quad (\text{with }\epsilon \text{ not computed}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(1035\)    =    \(3^{2} \cdot 5 \cdot 23\)
Sign: $unknown$
Primitive: yes
Self-dual: no
Selberg data: \((1,\ 1035,\ (1:\ ),\ 0)\)

Particular Values

Not enough information (Dirichlet series coefficients/sign of the functional equation) to compute special values.

Euler product

\(L(s,\rho) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.