Properties

Label 3-1-1.1-r0e3-p1.72p25.86m27.59-0
Degree $3$
Conductor $1$
Sign $1$
Analytic cond. $4.81697$
Root an. cond. $1.68885$
Arithmetic no
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Downloads

Learn more

Dirichlet series

L(s)  = 1  + (1.17 + 0.0364i)2-s + (0.431 + 0.505i)3-s + (0.202 + 0.122i)4-s + (0.516 + 0.193i)5-s + (0.487 + 0.609i)6-s + (0.00587 + 0.451i)7-s + (−0.145 + 0.150i)8-s + (−0.500 + 0.941i)9-s + (0.599 + 0.245i)10-s + (1.01 − 0.215i)11-s + (0.0255 + 0.155i)12-s + (−0.707 − 1.61i)13-s + (−0.00956 + 0.529i)14-s + (0.125 + 0.344i)15-s + (0.755 + 0.0721i)16-s + (−0.875 + 0.519i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s+25.8i) \, \Gamma_{\R}(s+1.72i) \, \Gamma_{\R}(s-27.5i) \, L(s)\cr=\mathstrut & \,\overline{\Lambda}(1-s)\end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(1\)
Sign: $1$
Analytic conductor: \(4.81697\)
Root analytic conductor: \(1.68885\)
Rational: no
Arithmetic: no
Primitive: yes
Self-dual: no
Selberg data: \((3,\ 1,\ (25.862536668i, 1.72423935728i, -27.586776026i:\ ),\ 1)\)

Euler product

\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{3} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−23.6614140, −21.7265144, −19.6601509, −17.2736788, −14.4709825, −13.6608526, −12.0633888, −9.2343795, −6.5969813, −4.3216340, 2.7213062, 4.4231594, 5.8452495, 8.4726623, 10.4177839, 12.6452563, 14.0291738, 15.0522595, 17.2242012, 19.7052444, 21.7323801, 22.5304690

Graph of the $Z$-function along the critical line