Properties

Label 3-1-1.1-r0e3-m8.45m27.03p35.48-0
Degree $3$
Conductor $1$
Sign $1$
Analytic cond. $32.6483$
Root an. cond. $3.19610$
Arithmetic no
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Downloads

Learn more

Dirichlet series

L(s)  = 1  + (−0.273 − 0.929i)2-s + (2.41 + 0.0124i)3-s + (−0.514 − 0.420i)4-s + (0.698 + 0.241i)5-s + (−0.650 − 2.25i)6-s + (0.0444 + 0.0721i)7-s + (−0.188 + 0.593i)8-s + (3.43 + 0.0724i)9-s + (0.0335 − 0.715i)10-s + (0.753 − 0.00325i)11-s + (−1.24 − 1.02i)12-s + (0.142 + 0.254i)13-s + (0.0549 − 0.0610i)14-s + (1.68 + 0.594i)15-s + (−0.202 − 0.553i)16-s + (0.355 + 0.295i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s-27.0i) \, \Gamma_{\R}(s-8.44i) \, \Gamma_{\R}(s+35.4i) \, L(s)\cr=\mathstrut & \,\overline{\Lambda}(1-s)\end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(1\)
Sign: $1$
Analytic conductor: \(32.6483\)
Root analytic conductor: \(3.19610\)
Rational: no
Arithmetic: no
Primitive: yes
Self-dual: no
Selberg data: \((3,\ 1,\ (-27.03112124i, -8.449624804i, 35.48074604i:\ ),\ 1)\)

Euler product

\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{3} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−24.521127, −21.760696, −20.493467, −19.450091, −17.790278, −16.183411, −14.829413, −13.875929, −12.990884, −9.713471, −8.748065, −8.037534, −6.808884, −4.233718, −2.994496, −1.667741, 1.562219, 2.195010, 3.662287, 9.739470, 13.709518, 14.655617, 18.856917, 19.832776, 21.100459

Graph of the $Z$-function along the critical line