Properties

Label 3-1-1.1-r0e3-p14.64p31.10m45.74-0
Degree $3$
Conductor $1$
Sign $1$
Analytic cond. $83.9458$
Root an. cond. $4.37857$
Arithmetic no
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Downloads

Learn more

Dirichlet series

L(s)  = 1  + (−0.805 − 0.346i)2-s + (1.01 − 0.482i)3-s + (1.33 + 0.211i)4-s + (0.0135 + 0.737i)5-s + (−0.983 + 0.0379i)6-s + (0.493 − 0.322i)7-s + (−0.768 − 0.632i)8-s + (−0.219 − 1.46i)9-s + (0.244 − 0.598i)10-s + (0.736 + 0.176i)11-s + (1.45 − 0.429i)12-s + (1.35 − 0.218i)13-s + (−0.508 + 0.0885i)14-s + (0.369 + 0.740i)15-s + (0.742 + 0.137i)16-s + (−0.710 − 0.538i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s+31.1i) \, \Gamma_{\R}(s+14.6i) \, \Gamma_{\R}(s-45.7i) \, L(s)\cr=\mathstrut & \,\overline{\Lambda}(1-s)\end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(1\)
Sign: $1$
Analytic conductor: \(83.9458\)
Root analytic conductor: \(4.37857\)
Rational: no
Arithmetic: no
Primitive: yes
Self-dual: no
Selberg data: \((3,\ 1,\ (31.1037294i, 14.63912698i, -45.7428564i:\ ),\ 1)\)

Euler product

\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{3} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−24.74877, −20.92595, −19.66443, −16.52683, −10.96495, −8.72222, −8.10403, −6.02834, −4.00877, −2.26306, −1.49102, 0.67559, 1.75662, 2.68752, 3.70084, 6.41295, 7.06783, 8.37063, 9.37561, 10.96367, 11.54345, 13.38900, 14.67232, 15.54082, 17.32147, 18.36792, 19.59650, 20.19161, 21.17269, 23.19594, 24.62502

Graph of the $Z$-function along the critical line