Properties

Label 8-525e4-1.1-c5e4-0-2
Degree $8$
Conductor $75969140625$
Sign $1$
Analytic cond. $5.02665\times 10^{7}$
Root an. cond. $9.17613$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 15·2-s − 36·3-s + 73·4-s − 540·6-s − 196·7-s − 9·8-s + 810·9-s + 186·11-s − 2.62e3·12-s + 610·13-s − 2.94e3·14-s − 927·16-s + 162·17-s + 1.21e4·18-s − 2.74e3·19-s + 7.05e3·21-s + 2.79e3·22-s − 2.82e3·23-s + 324·24-s + 9.15e3·26-s − 1.45e4·27-s − 1.43e4·28-s + 570·29-s − 9.41e3·31-s + 903·32-s − 6.69e3·33-s + 2.43e3·34-s + ⋯
L(s)  = 1  + 2.65·2-s − 2.30·3-s + 2.28·4-s − 6.12·6-s − 1.51·7-s − 0.0497·8-s + 10/3·9-s + 0.463·11-s − 5.26·12-s + 1.00·13-s − 4.00·14-s − 0.905·16-s + 0.135·17-s + 8.83·18-s − 1.74·19-s + 3.49·21-s + 1.22·22-s − 1.11·23-s + 0.114·24-s + 2.65·26-s − 3.84·27-s − 3.44·28-s + 0.125·29-s − 1.75·31-s + 0.155·32-s − 1.07·33-s + 0.360·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(5.02665\times 10^{7}\)
Root analytic conductor: \(9.17613\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(0.8791920772\)
\(L(\frac12)\) \(\approx\) \(0.8791920772\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + p^{2} T )^{4} \)
5 \( 1 \)
7$C_1$ \( ( 1 + p^{2} T )^{4} \)
good2$C_2 \wr S_4$ \( 1 - 15 T + 19 p^{3} T^{2} - 147 p^{3} T^{3} + 917 p^{3} T^{4} - 147 p^{8} T^{5} + 19 p^{13} T^{6} - 15 p^{15} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 186 T + 402761 T^{2} + 2659314 T^{3} + 68817190120 T^{4} + 2659314 p^{5} T^{5} + 402761 p^{10} T^{6} - 186 p^{15} T^{7} + p^{20} T^{8} \)
13$C_2 \wr S_4$ \( 1 - 610 T + 837507 T^{2} - 496111736 T^{3} + 459199016312 T^{4} - 496111736 p^{5} T^{5} + 837507 p^{10} T^{6} - 610 p^{15} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 162 T + 283291 p T^{2} - 1002109464 T^{3} + 9613689806248 T^{4} - 1002109464 p^{5} T^{5} + 283291 p^{11} T^{6} - 162 p^{15} T^{7} + p^{20} T^{8} \)
19$C_2 \wr S_4$ \( 1 + 2742 T + 9912864 T^{2} + 17174987862 T^{3} + 36523787688110 T^{4} + 17174987862 p^{5} T^{5} + 9912864 p^{10} T^{6} + 2742 p^{15} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 2826 T + 20337872 T^{2} + 43154672712 T^{3} + 184538743059817 T^{4} + 43154672712 p^{5} T^{5} + 20337872 p^{10} T^{6} + 2826 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 - 570 T + 55924020 T^{2} + 8689553436 T^{3} + 1441178925934253 T^{4} + 8689553436 p^{5} T^{5} + 55924020 p^{10} T^{6} - 570 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 9414 T + 65308645 T^{2} + 184313662974 T^{3} + 919886646484032 T^{4} + 184313662974 p^{5} T^{5} + 65308645 p^{10} T^{6} + 9414 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 15582 T + 132501325 T^{2} - 74846477178 T^{3} - 3386862058157220 T^{4} - 74846477178 p^{5} T^{5} + 132501325 p^{10} T^{6} - 15582 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 17004 T + 425964287 T^{2} + 4662047157972 T^{3} + 68836655275245772 T^{4} + 4662047157972 p^{5} T^{5} + 425964287 p^{10} T^{6} + 17004 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 200 p T + 481192422 T^{2} - 3227735015296 T^{3} + 100214960244625847 T^{4} - 3227735015296 p^{5} T^{5} + 481192422 p^{10} T^{6} - 200 p^{16} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 24750 T + 852499152 T^{2} - 16430780861622 T^{3} + 287437745959468574 T^{4} - 16430780861622 p^{5} T^{5} + 852499152 p^{10} T^{6} - 24750 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 10134 T + 1029716249 T^{2} + 8655604199010 T^{3} + 511830357535629076 T^{4} + 8655604199010 p^{5} T^{5} + 1029716249 p^{10} T^{6} + 10134 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 9780 T + 1569939921 T^{2} - 27486034055814 T^{3} + 1219412476221851096 T^{4} - 27486034055814 p^{5} T^{5} + 1569939921 p^{10} T^{6} - 9780 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 60408 T + 4675983199 T^{2} + 164501404686972 T^{3} + 6504972629954951940 T^{4} + 164501404686972 p^{5} T^{5} + 4675983199 p^{10} T^{6} + 60408 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 150956 T + 12457933899 T^{2} - 10592733090028 p T^{3} + 30150562333417327040 T^{4} - 10592733090028 p^{6} T^{5} + 12457933899 p^{10} T^{6} - 150956 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 1014 T + 1307507589 T^{2} - 49493354960046 T^{3} + 1894193992085195540 T^{4} - 49493354960046 p^{5} T^{5} + 1307507589 p^{10} T^{6} - 1014 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 39266 T + 1705388628 T^{2} - 105425347162654 T^{3} + 9394537395988899542 T^{4} - 105425347162654 p^{5} T^{5} + 1705388628 p^{10} T^{6} - 39266 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 149160 T + 16094243151 T^{2} - 1159429909717092 T^{3} + 72337890216436558556 T^{4} - 1159429909717092 p^{5} T^{5} + 16094243151 p^{10} T^{6} - 149160 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 118098 T + 7401791445 T^{2} - 573170335197354 T^{3} + 46727910183543636488 T^{4} - 573170335197354 p^{5} T^{5} + 7401791445 p^{10} T^{6} - 118098 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 7962 T + 19461670324 T^{2} + 124884626825526 T^{3} + \)\(15\!\cdots\!70\)\( T^{4} + 124884626825526 p^{5} T^{5} + 19461670324 p^{10} T^{6} + 7962 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 + 52416 T + 23880082476 T^{2} + 942039836690112 T^{3} + \)\(28\!\cdots\!58\)\( T^{4} + 942039836690112 p^{5} T^{5} + 23880082476 p^{10} T^{6} + 52416 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.71104526835076054825748316261, −6.49192727875450169399368938295, −6.19551430961089391383352210417, −6.19108852052932433139502906978, −6.17447698920923810632127509846, −5.46758085320082907630443050531, −5.45315709728692601630843332222, −5.34493344855274175541744420075, −5.29309632832342801138461986802, −4.57743011001005882385363326980, −4.41720159130038473387094037462, −4.40331015982852796446972785322, −4.22295486319566501903334001638, −3.73319203390643097221646721055, −3.58574577215188208380242382158, −3.43943043704618890657275463294, −3.39508672370674601544393383200, −2.41563901658888626680892933837, −2.35092867411324256523047337592, −2.05995283319763102821500479123, −1.52183627210608140620149871758, −1.12427784379004865514123505186, −0.65901437810491111204504620031, −0.61722063697124330033306767211, −0.10545833158175288297779966648, 0.10545833158175288297779966648, 0.61722063697124330033306767211, 0.65901437810491111204504620031, 1.12427784379004865514123505186, 1.52183627210608140620149871758, 2.05995283319763102821500479123, 2.35092867411324256523047337592, 2.41563901658888626680892933837, 3.39508672370674601544393383200, 3.43943043704618890657275463294, 3.58574577215188208380242382158, 3.73319203390643097221646721055, 4.22295486319566501903334001638, 4.40331015982852796446972785322, 4.41720159130038473387094037462, 4.57743011001005882385363326980, 5.29309632832342801138461986802, 5.34493344855274175541744420075, 5.45315709728692601630843332222, 5.46758085320082907630443050531, 6.17447698920923810632127509846, 6.19108852052932433139502906978, 6.19551430961089391383352210417, 6.49192727875450169399368938295, 6.71104526835076054825748316261

Graph of the $Z$-function along the critical line