L(s) = 1 | + 4-s − 2·9-s − 4·11-s + 4·16-s + 4·19-s + 8·29-s − 2·36-s − 32·41-s − 4·44-s − 2·49-s + 12·59-s − 8·61-s + 11·64-s − 20·71-s + 4·76-s − 16·79-s + 3·81-s − 4·89-s + 8·99-s − 44·101-s − 28·109-s + 8·116-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 2/3·9-s − 1.20·11-s + 16-s + 0.917·19-s + 1.48·29-s − 1/3·36-s − 4.99·41-s − 0.603·44-s − 2/7·49-s + 1.56·59-s − 1.02·61-s + 11/8·64-s − 2.37·71-s + 0.458·76-s − 1.80·79-s + 1/3·81-s − 0.423·89-s + 0.804·99-s − 4.37·101-s − 2.68·109-s + 0.742·116-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
308.848 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅58⋅74, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.173044024 |
L(21) |
≈ |
1.173044024 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | (1+T2)2 |
| 5 | | 1 |
| 7 | C2 | (1+T2)2 |
good | 2 | C23 | 1−T2−3T4−p2T6+p4T8 |
| 11 | D4 | (1+2T+3T2+2pT3+p2T4)2 |
| 13 | D4×C2 | 1−24T2+302T4−24p2T6+p4T8 |
| 17 | D4×C2 | 1+24T2+542T4+24p2T6+p4T8 |
| 19 | D4 | (1−2T+34T2−2pT3+p2T4)2 |
| 23 | C22 | (1−21T2+p2T4)2 |
| 29 | D4 | (1−4T+17T2−4pT3+p2T4)2 |
| 31 | C22 | (1+42T2+p2T4)2 |
| 37 | D4×C2 | 1−106T2+5467T4−106p2T6+p4T8 |
| 41 | C2 | (1+8T+pT2)4 |
| 43 | D4×C2 | 1−90T2+5003T4−90p2T6+p4T8 |
| 47 | D4×C2 | 1−128T2+8014T4−128p2T6+p4T8 |
| 53 | D4×C2 | 1−140T2+9238T4−140p2T6+p4T8 |
| 59 | D4 | (1−6T+122T2−6pT3+p2T4)2 |
| 61 | C4 | (1+4T−54T2+4pT3+p2T4)2 |
| 67 | D4×C2 | 1−146T2+11427T4−146p2T6+p4T8 |
| 71 | D4 | (1+10T+147T2+10pT3+p2T4)2 |
| 73 | D4×C2 | 1−280T2+30238T4−280p2T6+p4T8 |
| 79 | D4 | (1+8T+169T2+8pT3+p2T4)2 |
| 83 | D4×C2 | 1−164T2+15382T4−164p2T6+p4T8 |
| 89 | D4 | (1+2T+134T2+2pT3+p2T4)2 |
| 97 | D4×C2 | 1−220T2+25798T4−220p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.82779121250595269589007569860, −7.70529078176513594536598361853, −7.33474140706265203583111947204, −7.02135852238868284906466194689, −7.01504206603295341141920793164, −6.53698472330534938503928165471, −6.38209003437364867952162510224, −6.37372105154529693582361468244, −5.76125464253528751313768579938, −5.51662501056955730919185238440, −5.30313492292577676170906596520, −5.25222771584494571758207954451, −4.96767850459350227327135990783, −4.75178273847731043647911131995, −4.08066378282328285310519425593, −3.91637536216849347108536082304, −3.83966297596316986770140245596, −2.97834451304383027415082022637, −2.96822422112917751123288128406, −2.95626352174807229827986193188, −2.66502739460181134897732335368, −1.79005906929978794111508077973, −1.68028554892747885178977757722, −1.27679661244757547946785259237, −0.34176444194724140528034704113,
0.34176444194724140528034704113, 1.27679661244757547946785259237, 1.68028554892747885178977757722, 1.79005906929978794111508077973, 2.66502739460181134897732335368, 2.95626352174807229827986193188, 2.96822422112917751123288128406, 2.97834451304383027415082022637, 3.83966297596316986770140245596, 3.91637536216849347108536082304, 4.08066378282328285310519425593, 4.75178273847731043647911131995, 4.96767850459350227327135990783, 5.25222771584494571758207954451, 5.30313492292577676170906596520, 5.51662501056955730919185238440, 5.76125464253528751313768579938, 6.37372105154529693582361468244, 6.38209003437364867952162510224, 6.53698472330534938503928165471, 7.01504206603295341141920793164, 7.02135852238868284906466194689, 7.33474140706265203583111947204, 7.70529078176513594536598361853, 7.82779121250595269589007569860