Properties

Label 2-32192-1.1-c1-0-11
Degree $2$
Conductor $32192$
Sign $1$
Analytic cond. $257.054$
Root an. cond. $16.0329$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·5-s + 7-s − 2·9-s + 3·11-s + 3·13-s − 4·15-s − 4·17-s − 21-s − 3·23-s + 11·25-s + 5·27-s + 10·29-s + 10·31-s − 3·33-s + 4·35-s − 2·37-s − 3·39-s + 2·41-s − 5·43-s − 8·45-s + 11·47-s − 6·49-s + 4·51-s + 14·53-s + 12·55-s + 4·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.78·5-s + 0.377·7-s − 2/3·9-s + 0.904·11-s + 0.832·13-s − 1.03·15-s − 0.970·17-s − 0.218·21-s − 0.625·23-s + 11/5·25-s + 0.962·27-s + 1.85·29-s + 1.79·31-s − 0.522·33-s + 0.676·35-s − 0.328·37-s − 0.480·39-s + 0.312·41-s − 0.762·43-s − 1.19·45-s + 1.60·47-s − 6/7·49-s + 0.560·51-s + 1.92·53-s + 1.61·55-s + 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32192\)    =    \(2^{6} \cdot 503\)
Sign: $1$
Analytic conductor: \(257.054\)
Root analytic conductor: \(16.0329\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 32192,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.568978317\)
\(L(\frac12)\) \(\approx\) \(3.568978317\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
503 \( 1 - T \)
good3 \( 1 + T + p T^{2} \)
5 \( 1 - 4 T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 5 T + p T^{2} \)
47 \( 1 - 11 T + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 - 3 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.94877344239925, −14.23068890161208, −14.00294609469677, −13.63131402845650, −13.06974702752837, −12.35765398675703, −11.72057703717561, −11.46624152551856, −10.65623763086407, −10.25104187839021, −9.854581770120246, −9.016108963293389, −8.594475767218412, −8.342575106400666, −7.067701747173553, −6.528705000731765, −6.180951911749364, −5.779829089916770, −5.024234459913193, −4.555689537975173, −3.708877130974218, −2.648849376367072, −2.316578521846599, −1.333982332192473, −0.8210662579039611, 0.8210662579039611, 1.333982332192473, 2.316578521846599, 2.648849376367072, 3.708877130974218, 4.555689537975173, 5.024234459913193, 5.779829089916770, 6.180951911749364, 6.528705000731765, 7.067701747173553, 8.342575106400666, 8.594475767218412, 9.016108963293389, 9.854581770120246, 10.25104187839021, 10.65623763086407, 11.46624152551856, 11.72057703717561, 12.35765398675703, 13.06974702752837, 13.63131402845650, 14.00294609469677, 14.23068890161208, 14.94877344239925

Graph of the $Z$-function along the critical line