Properties

Genus \(8\)
Quotient Genus \(0\)
Group \(\PSL(2,7)\)
Signature \([ 0; 3, 3, 4 ]\)
Generating Vectors \(4\)

Related objects

Downloads

Learn more about

Family Information

Genus: 8
Quotient Genus: 0
Group name: $\PSL(2,7)$
Group identifier: [168,42]
Signature: $[ 0; 3, 3, 4 ]$
Conjugacy classes for this refined passport: 3, 3, 4

The full automorphism group for this family is $SO(3,7)$ with signature $[ 0; 2, 3, 8 ]$.

Jacobian variety group algebra decomposition:$E^{8}$
Corresponding character(s): 6

Generating Vector(s)

Displaying 4 of 4 generating vectors for this refined passport.

8.168-42.0.3-3-4.1.1

  (1,2,3) (4,5,6) (7,77,105) (8,9,10) (11,12,13) (14,154,126) (15,16,17) (18,19,20) (21,91,161) (22,23,24) (25,26,27) (28,84,140) (29,30,31) (32,33,34) (35,147,49) (36,37,38) (39,40,41) (42,98,70) (43,44,45) (46,47,48) (50,51,52) (53,54,55) (56,112,168) (57,58,59) (60,61,62) (63,133,119) (64,65,66) (67,68,69) (71,72,73) (74,75,76) (78,79,80) (81,82,83) (85,86,87) (88,89,90) (92,93,94) (95,96,97) (99,100,101) (102,103,104) (106,107,108) (109,110,111) (113,114,115) (116,117,118) (120,121,122) (123,124,125) (127,128,129) (130,131,132) (134,135,136) (137,138,139) (141,142,143) (144,145,146) (148,149,150) (151,152,153) (155,156,157) (158,159,160) (162,163,164) (165,166,167)
  (1,121,167) (2,69,155) (3,136,38) (4,63,110) (5,151,98) (6,162,65) (7,33,60) (8,100,139) (9,62,141) (10,164,129) (11,70,82) (12,74,119) (13,134,58) (14,89,67) (15,135,104) (16,55,92) (17,115,108) (18,49,75) (19,81,168) (20,99,51) (21,152,46) (22,156,118) (23,48,120) (24,101,31) (25,56,131) (26,88,147) (27,113,44) (28,40,53) (29,128,111) (30,76,148) (32,161,54) (34,106,72) (35,96,158) (36,107,132) (37,83,85) (39,126,61) (41,127,79) (42,145,123) (43,163,125) (45,94,80) (47,109,140) (50,142,97) (52,122,87) (57,93,146) (59,157,150) (64,114,160) (66,143,73) (68,130,105) (71,86,153) (77,138,116) (78,149,90) (84,103,165) (91,117,144) (95,154,166) (102,133,159) (112,124,137)
  (1,166,14,69) (2,157,58,136) (3,37,87,121) (4,109,46,151) (5,42,125,162) (6,64,159,63) (7,62,8,138) (9,143,65,164) (10,128,31,100) (11,81,18,74) (12,133,104,134) (13,57,145,70) (15,103,28,55) (16,94,44,115) (17,107,38,135) (19,112,139,99) (20,50,96,49) (21,48,22,117) (23,122,51,101) (24,30,150,156) (25,130,67,88) (26,35,160,113) (27,43,124,56) (29,110,119,76) (32,53,39,60) (33,105,132,106) (34,71,152,161) (36,131,168,83) (40,140,111,127) (41,78,89,126) (45,79,129,163) (47,84,167,120) (52,86,73,142) (54,91,146,92) (59,149,80,93) (61,154,97,141) (66,72,108,114) (68,77,118,155) (75,147,90,148) (82,98,153,85) (95,165,102,158) (116,137,123,144)

8.168-42.0.3-3-4.1.2
  (1,2,3) (4,5,6) (7,77,105) (8,9,10) (11,12,13) (14,154,126) (15,16,17) (18,19,20) (21,91,161) (22,23,24) (25,26,27) (28,84,140) (29,30,31) (32,33,34) (35,147,49) (36,37,38) (39,40,41) (42,98,70) (43,44,45) (46,47,48) (50,51,52) (53,54,55) (56,112,168) (57,58,59) (60,61,62) (63,133,119) (64,65,66) (67,68,69) (71,72,73) (74,75,76) (78,79,80) (81,82,83) (85,86,87) (88,89,90) (92,93,94) (95,96,97) (99,100,101) (102,103,104) (106,107,108) (109,110,111) (113,114,115) (116,117,118) (120,121,122) (123,124,125) (127,128,129) (130,131,132) (134,135,136) (137,138,139) (141,142,143) (144,145,146) (148,149,150) (151,152,153) (155,156,157) (158,159,160) (162,163,164) (165,166,167)
  (1,36,134) (2,165,122) (3,156,67) (4,66,163) (5,111,133) (6,70,152) (7,131,69) (8,127,162) (9,137,101) (10,142,60) (11,59,135) (12,83,42) (13,63,75) (14,40,62) (15,106,113) (16,102,136) (17,93,53) (18,52,100) (19,76,35) (20,56,82) (21,33,55) (22,29,99) (23,116,157) (24,121,46) (25,45,114) (26,132,112) (27,49,89) (28,110,48) (30,109,129) (31,149,74) (32,73,107) (34,77,61) (37,130,108) (38,86,81) (39,80,128) (41,84,54) (43,78,92) (44,123,164) (47,153,91) (50,85,120) (51,95,143) (57,148,155) (58,144,94) (64,71,141) (65,158,115) (68,90,154) (72,151,87) (79,88,150) (96,167,126) (97,147,159) (98,124,146) (103,160,119) (104,140,166) (105,117,139) (118,161,145) (125,168,138)
  (1,136,104,165) (2,121,23,156) (3,69,130,36) (4,162,129,111) (5,63,12,70) (6,151,71,66) (7,68,14,61) (8,164,125,137) (9,100,51,142) (10,62,39,127) (11,134,38,83) (13,74,148,59) (15,115,160,102) (16,135,58,93) (17,55,32,106) (18,99,31,76) (19,49,26,56) (20,81,85,52) (21,54,28,47) (22,101,139,116) (24,48,109,29) (25,113,108,132) (27,88,78,45) (30,128,79,149) (33,161,117,77) (34,60,141,73) (35,75,119,159) (37,107,72,86) (40,126,166,84) (41,53,92,80) (42,82,168,124) (43,94,146,123) (44,163,65,114) (46,120,87,153) (50,122,167,95) (57,157,118,144) (64,143,97,158) (67,155,150,90) (89,147,96,154) (91,152,98,145) (103,133,110,140) (105,138,112,131)

8.168-42.0.3-3-4.1.3
  (1,2,3) (4,5,6) (7,77,105) (8,9,10) (11,12,13) (14,154,126) (15,16,17) (18,19,20) (21,91,161) (22,23,24) (25,26,27) (28,84,140) (29,30,31) (32,33,34) (35,147,49) (36,37,38) (39,40,41) (42,98,70) (43,44,45) (46,47,48) (50,51,52) (53,54,55) (56,112,168) (57,58,59) (60,61,62) (63,133,119) (64,65,66) (67,68,69) (71,72,73) (74,75,76) (78,79,80) (81,82,83) (85,86,87) (88,89,90) (92,93,94) (95,96,97) (99,100,101) (102,103,104) (106,107,108) (109,110,111) (113,114,115) (116,117,118) (120,121,122) (123,124,125) (127,128,129) (130,131,132) (134,135,136) (137,138,139) (141,142,143) (144,145,146) (148,149,150) (151,152,153) (155,156,157) (158,159,160) (162,163,164) (165,166,167)
  (1,11,16) (2,50,46) (3,90,7) (4,44,8) (5,103,75) (6,91,87) (9,22,18) (10,34,14) (12,124,152) (13,35,31) (15,25,65) (17,41,21) (19,159,89) (20,42,38) (23,57,67) (24,153,28) (26,138,82) (27,154,150) (29,116,121) (30,162,39) (32,37,113) (33,47,145) (36,165,156) (40,68,96) (43,53,58) (45,132,49) (48,133,129) (51,64,60) (52,76,56) (54,166,110) (55,77,73) (59,83,63) (61,117,131) (62,84,80) (66,111,70) (69,112,108) (71,158,163) (72,120,81) (74,79,155) (78,123,114) (85,95,100) (86,134,130) (88,128,92) (93,106,102) (94,118,98) (97,119,115) (99,109,149) (101,125,105) (104,126,122) (107,141,151) (127,137,142) (135,148,144) (136,160,140) (139,161,157) (143,167,147) (146,168,164)
  (1,15,64,50) (2,48,128,90) (3,105,124,11) (4,10,126,103) (5,74,157,91) (6,86,132,44) (7,89,158,73) (8,43,57,22) (9,20,37,34) (12,151,143,35) (13,30,41,16) (14,33,144,150) (17,161,138,25) (18,24,140,159) (19,88,94,42) (21,40,95,87) (23,69,107,153) (26,81,122,154) (27,149,111,65) (28,152,123,80) (29,120,71,162) (31,49,131,116) (32,115,133,47) (36,155,78,113) (38,70,110,165) (39,164,112,68) (45,147,166,53) (46,52,168,145) (51,62,79,76) (54,109,101,77) (55,72,83,58) (56,75,102,108) (59,119,96,67) (60,66,98,117) (61,130,136,84) (63,82,137,129) (85,99,148,134) (92,127,141,106) (93,104,121,118) (97,114,125,100) (135,146,163,160) (139,156,167,142)

8.168-42.0.3-3-4.1.4
  (1,2,3) (4,5,6) (7,77,105) (8,9,10) (11,12,13) (14,154,126) (15,16,17) (18,19,20) (21,91,161) (22,23,24) (25,26,27) (28,84,140) (29,30,31) (32,33,34) (35,147,49) (36,37,38) (39,40,41) (42,98,70) (43,44,45) (46,47,48) (50,51,52) (53,54,55) (56,112,168) (57,58,59) (60,61,62) (63,133,119) (64,65,66) (67,68,69) (71,72,73) (74,75,76) (78,79,80) (81,82,83) (85,86,87) (88,89,90) (92,93,94) (95,96,97) (99,100,101) (102,103,104) (106,107,108) (109,110,111) (113,114,115) (116,117,118) (120,121,122) (123,124,125) (127,128,129) (130,131,132) (134,135,136) (137,138,139) (141,142,143) (144,145,146) (148,149,150) (151,152,153) (155,156,157) (158,159,160) (162,163,164) (165,166,167)
  (1,108,81) (2,140,96) (3,116,148) (4,141,115) (5,30,28) (6,83,146) (7,26,37) (8,80,109) (9,168,117) (10,95,71) (11,155,94) (12,86,56) (13,111,160) (14,54,128) (15,73,130) (16,119,166) (17,144,78) (18,120,143) (19,149,63) (20,132,125) (21,61,107) (22,129,74) (23,105,145) (24,165,85) (25,92,164) (27,76,97) (29,52,137) (31,88,57) (32,64,87) (33,93,84) (34,139,69) (35,82,100) (36,59,102) (38,151,50) (39,43,150) (40,142,77) (41,104,48) (42,75,135) (44,98,138) (45,158,106) (46,99,157) (47,72,70) (49,68,79) (51,126,159) (53,113,136) (55,153,118) (58,161,124) (60,162,101) (62,90,167) (65,147,103) (66,123,127) (67,134,122) (89,114,112) (91,110,121) (131,156,154) (133,152,163)
  (1,83,5,140) (2,95,9,116) (3,150,45,108) (4,114,88,30) (6,145,77,141) (7,36,104,40) (8,111,12,168) (10,73,17,80) (11,93,32,86) (13,159,154,155) (14,127,125,131) (15,132,19,119) (16,165,23,144) (18,142,39,149) (20,124,91,120) (21,106,160,110) (22,76,26,105) (24,87,66,129) (25,163,151,37) (27,96,84,92) (28,29,139,33) (31,59,38,52) (34,68,147,64) (35,99,48,103) (41,47,98,43) (42,134,69,138) (44,137,51,158) (46,156,130,72) (49,78,146,82) (50,153,54,126) (53,135,74,128) (55,117,112,113) (56,85,167,89) (57,90,61,161) (58,123,65,102) (60,100,81,107) (62,166,133,162) (63,148,118,152) (67,121,109,79) (70,71,97,75) (94,157,101,164) (115,143,122,136)

Display number of generating vectors: