Properties

Genus \(5\)
Quotient Genus \(0\)
Group \(C_2^2\times A_4\)
Signature \([ 0; 2, 6, 6 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 5
Quotient Genus: 0
Group name: $C_2^2\times A_4$
Group identifier: [48,49]
Signature: $[ 0; 2, 6, 6 ]$
Conjugacy classes for this refined passport: 6, 13, 16

The full automorphism group for this family is $\GL(2,Z/4)$ with signature $[ 0; 2, 4, 6 ]$.

Jacobian variety group algebra decomposition:$E\times E\times E^{3}$
Corresponding character(s): 7, 11, 15

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

5.48-49.0.2-6-6.1.1

  (1,14) (2,13) (3,16) (4,15) (5,18) (6,17) (7,20) (8,19) (9,22) (10,21) (11,24) (12,23) (25,38) (26,37) (27,40) (28,39) (29,42) (30,41) (31,44) (32,43) (33,46) (34,45) (35,48) (36,47)
  (1,29,9,25,5,33) (2,32,11,26,8,35) (3,30,12,27,6,36) (4,31,10,28,7,34) (13,41,21,37,17,45) (14,44,23,38,20,47) (15,42,24,39,18,48) (16,43,22,40,19,46)
  (1,46,8,37,10,44) (2,48,5,38,12,41) (3,47,7,39,11,43) (4,45,6,40,9,42) (13,34,20,25,22,32) (14,36,17,26,24,29) (15,35,19,27,23,31) (16,33,18,28,21,30)