Properties

Genus \(5\)
Quotient Genus \(0\)
Group \(C_2\times A_4\)
Signature \([ 0; 3, 6, 6 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 5
Quotient Genus: 0
Group name: $C_2\times A_4$
Group identifier: [24,13]
Signature: $[ 0; 3, 6, 6 ]$
Conjugacy classes for this refined passport: 6, 8, 8

The full automorphism group for this family is $\GL(2,Z/4)$ with signature $[ 0; 2, 4, 6 ]$.

Jacobian variety group algebra decomposition:$E\times E\times E^{3}$
Corresponding character(s): 3, 4, 8

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

5.24-13.0.3-6-6.2.1

  (1,9,5) (2,11,8) (3,12,6) (4,10,7) (13,21,17) (14,23,20) (15,24,18) (16,22,19)
  (1,24,7,13,12,19) (2,22,6,14,10,18) (3,21,8,15,9,20) (4,23,5,16,11,17)
  (1,22,8,13,10,20) (2,24,5,14,12,17) (3,23,7,15,11,19) (4,21,6,16,9,18)