Properties

Genus \(5\)
Quotient Genus \(0\)
Group \(C_2^2.\GL(2,3)\)
Signature \([ 0; 2, 3, 8 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 5
Quotient Genus: 0
Group name: $C_2^2.\GL(2,3)$
Group identifier: [192,181]
Signature: $[ 0; 2, 3, 8 ]$
Conjugacy classes for this refined passport: 5, 6, 12

Jacobian variety group algebra decomposition:$E^{2}\times E^{3}$
Corresponding character(s): 4, 8

Other Data

Hyperelliptic curve(s):No
Cyclic trigonal curve(s):No

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

5.192-181.0.2-3-8.1.1

  (1,97) (2,98) (3,99) (4,100) (5,103) (6,104) (7,101) (8,102) (9,113) (10,114) (11,115) (12,116) (13,119) (14,120) (15,117) (16,118) (17,105) (18,106) (19,107) (20,108) (21,111) (22,112) (23,109) (24,110) (25,122) (26,121) (27,124) (28,123) (29,128) (30,127) (31,126) (32,125) (33,161) (34,162) (35,163) (36,164) (37,167) (38,168) (39,165) (40,166) (41,177) (42,178) (43,179) (44,180) (45,183) (46,184) (47,181) (48,182) (49,169) (50,170) (51,171) (52,172) (53,175) (54,176) (55,173) (56,174) (57,186) (58,185) (59,188) (60,187) (61,192) (62,191) (63,190) (64,189) (65,129) (66,130) (67,131) (68,132) (69,135) (70,136) (71,133) (72,134) (73,145) (74,146) (75,147) (76,148) (77,151) (78,152) (79,149) (80,150) (81,137) (82,138) (83,139) (84,140) (85,143) (86,144) (87,141) (88,142) (89,154) (90,153) (91,156) (92,155) (93,160) (94,159) (95,158) (96,157)
  (1,51,94) (2,52,93) (3,54,89) (4,53,90) (5,50,92) (6,49,91) (7,55,95) (8,56,96) (9,48,75) (10,47,76) (11,41,80) (12,42,79) (13,45,77) (14,46,78) (15,44,74) (16,43,73) (17,59,70) (18,60,69) (19,62,65) (20,61,66) (21,58,68) (22,57,67) (23,63,71) (24,64,72) (25,35,86) (26,36,85) (27,38,81) (28,37,82) (29,34,84) (30,33,83) (31,39,87) (32,40,88) (97,147,190) (98,148,189) (99,150,185) (100,149,186) (101,146,188) (102,145,187) (103,151,191) (104,152,192) (105,144,171) (106,143,172) (107,137,176) (108,138,175) (109,141,173) (110,142,174) (111,140,170) (112,139,169) (113,155,166) (114,156,165) (115,158,161) (116,157,162) (117,154,164) (118,153,163) (119,159,167) (120,160,168) (121,131,182) (122,132,181) (123,134,177) (124,133,178) (125,130,180) (126,129,179) (127,135,183) (128,136,184)
  (1,159,13,151,5,155,9,147) (2,160,14,152,6,156,10,148) (3,154,15,146,7,158,11,150) (4,153,16,145,8,157,12,149) (17,136,29,140,21,132,25,144) (18,135,30,139,22,131,26,143) (19,129,31,141,23,133,27,137) (20,130,32,142,24,134,28,138) (33,127,45,119,37,123,41,115) (34,128,46,120,38,124,42,116) (35,122,47,114,39,126,43,118) (36,121,48,113,40,125,44,117) (49,104,61,108,53,100,57,112) (50,103,62,107,54,99,58,111) (51,97,63,109,55,101,59,105) (52,98,64,110,56,102,60,106) (65,191,77,183,69,187,73,179) (66,192,78,184,70,188,74,180) (67,186,79,178,71,190,75,182) (68,185,80,177,72,189,76,181) (81,168,93,172,85,164,89,176) (82,167,94,171,86,163,90,175) (83,161,95,173,87,165,91,169) (84,162,96,174,88,166,92,170)