Properties

Genus \(4\)
Quotient Genus \(0\)
Group \(C_3\times A_4\)
Signature \([ 0; 3, 3, 6 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 4
Quotient Genus: 0
Group name: $C_3\times A_4$
Group identifier: [36,11]
Signature: $[ 0; 3, 3, 6 ]$
Conjugacy classes for this refined passport: 5, 10, 12

The full automorphism group for this family is $C_3\times S_4$ with signature $[ 0; 2, 3, 12 ]$.

Jacobian variety group algebra decomposition:$E\times E^{3}$
Corresponding character(s): 2, 11

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

4.36-11.0.3-3-6.2.1

  (1,13,25) (2,16,27) (3,14,28) (4,15,26) (5,17,29) (6,20,31) (7,18,32) (8,19,30) (9,21,33) (10,24,35) (11,22,36) (12,23,34)
  (1,32,23) (2,30,22) (3,29,24) (4,31,21) (5,36,15) (6,34,14) (7,33,16) (8,35,13) (9,28,19) (10,26,18) (11,25,20) (12,27,17)
  (1,12,5,4,9,8) (2,11,6,3,10,7) (13,24,17,16,21,20) (14,23,18,15,22,19) (25,36,29,28,33,32) (26,35,30,27,34,31)